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What We Know

Thermometer records tell us...

Earth's temperature is rising.
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Consistent with the thermometer record, observations tell us...

Coastal glaciers are retreating

Muir Glacier, Alaska, 1941-2004
August 1941 August 2004

NSIDC/WDC for Glaciology, Boulder, compiler. 2002, updated 2006. Online glacier
photograph database. Boulder, CO: National Snow and Ice Data Center.

And...
Mountain glaciers are disappearing

Rongbuk glacier in 1968 (top) and 2007. The largest glacier on Mount
Everest’s northern slopes feeds the Rongbuk River.

National Snow & Ice Data Center 2010
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And...

The Greenland ice sheet is shrinking

Change in Greenland ice mass in the 215 century to date

Gigatons

] Tonnages referenced to
] 2009 average

Waleed Abdalati,
Fiob 0 i i from GRACE,
2000 s December 2014
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And, because of melting ice and thermal expansion,
Sea level is rising
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We also know...
Warming did not "stop in 1998".
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And we know...
The role of these GHG increases in the observed warming.

Human vs natural influences 1950-2010 (° C)
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We also know...

This human influence reversed a long-term cooling.
Years before present
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Blue band is one-sigma uncertainty range
(68% confidence interval). The data show
how a long-term natural cooling trend has
been suddenly reversed by anthropogenic
warming over the last century.

Marcott et al. SCIENCE vol 339,
2013
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Climate change is not just about temperature.

Climate = weather patterns, meaning averages,
extremes, timing, spatial distribution of...

* hot & cold
* cloudy & clear
* humid & dry

* drizzles & downpours

* snowfall, snowpack, & snowmelt

* breezes, blizzards, tornadoes, & typhoons

Climate change entails alteration of the patterns.

Global average T is just an index of the state of the global climate
system as expressed in these patterns. Small changes in the index
correspond to big changes in the system.

The potential impacts of climate change are many.
Climate governs (so altering climate will affect)
* availability of water
* productivity of farms, forests, & fisheries
* prevalence of oppressive heat & humidity
» formation & dispersion of air pollutants
* geography of disease
* damages from storms, floods, droughts, wildfires
* property losses from sea-level rise
* expenditures on engineered environments

* distribution & abundance of species
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Many such impacts are already occurring.
Around the world we’re seeing, variously, increases in
* floods

 wildfires

» droughts

* heat waves

» pest outbreaks

 coastal erosion

« coral bleaching events

» power of the strongest storms

» geographic range of tropical pathogens

All plausibly linked to climate change by theory, models,
observed “fingerprints”

Ongoing impacts: Hotter summers

Probability distribution for Jun-Jul-Aug temperature anomaly on land in the
Northern Hemisphere. Baseline normal distribution is for 1951-80.
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Portion of Northern Hemisphere land experiencing > 30 summer heat in a given year
increased from 0.1-0.2% in 1951-80 to 10% in 2001-2011—a 50- to 100-fold increase. 16
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Ongoing Impacts: Torrential rains in the USA

Percentage
increase, between
1958 and 2012, in
the amount of
precipitation falling
in the heaviest 1%
of precipitation
events in each

region.
i - Source: USGCRP,
33% Assessment of
cberigo %) Climate Change
SUpENgTTE N B Impacts in the United
<0 09 1019 2029 3039 40+ States, May 2014

This is happening in many regions.

Central Europe, May-June

%9&3‘3§a.infall in central Europe caused racord
floods. There was also flooding in many other
regions of the world. PAGE18
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Ongoing impacts: In a wetter world overall, many
drought-prone regions are getting more so!

California’s Folsom Lake at 17% capacity, 02-02-14

Credit: Ken James / Bloomberg

The influence of warming on drought

* Higher temperatures = bigger losses * Mountains get more rain, less snow,
to evaporation. yielding more runoff in winter and
leaving less for summer.

* Earlier spring snowmelt also leaves
less runoff for summer.

* More of the rain falling in extreme
events = more loss to flood runoff,
less moisture soaking into soil.

* Altered atmospheric circulation patterns can also play a role.
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Ongoing impacts: Floods & droughts in China

An example of how changing circulation patterns can work:

30-year weakening of East-Asia monsoon—attributed to global
climate change—has meant less moisture flow South to North
over China, producing increased flooding in South, drought in
North, with serious impacts on agriculture.

HREC CNER
$8BBCRE8SL

Qi Ye, Tsinghua University, May 2006

Ongoing impacts: Drought in the Amazon

Here, too,
changing
atmospheric
circulation
has played a
role.

The 2014

drought in

Southeastern
Brazil affected
more than 27
million people
and entrained
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wildfire frequenc--

Ongoing impacts: Wildfires are increasing with
warming

Western US Forest Wildfires and Spring-Summer Temperature
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Fire frequency is correlated with temperature; part of that link works
via the reduced soil moisture that goes with higher temperatures.

Westerling et al., SCIENCE, 18 August 2006

Losses to fires at wildland-urban interfaces

Building Loss by Fires at California Wildland-Urban Interfaces
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Some of the increase is due to more property at

risk, but much of it is the increase in fires. National Climate Assessment

11/10/2015

12



Ongoing impacts: increasing power of cyclones

Tropical cyclones get their energy from
the warm surface layer of the ocean

(which is getting warmer and deeper
under climate change) and from water
vapor in the atmosphere (also going up).
In the region that spawned Haiyan—
probably the most powerful typhoon to
make landfall in modern times—the

“Tropical Cyclone Heat Potential” has
gone up more than 20% since 1990.
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Heated situation. Over 2 decades, a thickening layer of warm water (red) increased
the storm-driving heat potential (blue) at the latitudes Haiyan traversed.

Many factors affect the formation and tracks
of these storms, but, all else equal, a given
cyclone will be more powerful in the
presence of a warmer ocean and higher
atmospheric water content than it would be
otherwise. And the higher local sea level is,
the worse the storm surge from any given
cyclone will be. Haiyan killed 6,000 people,
injured 27,000, and destroyed or damaged
1.2 million homes.

Hurricane power is correlated with sea-surface
& air temperatures in the N Atlantic as well
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Source: Coumou & Rahmstorf, Nature Climate 155
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Red line is power dissipation index for N Atlantic hurricanes. Blue line is sea-surface
temperature in main development region for these storms. Dotted line is evolution of
Northern Hemisphere mean temperature. All data are 6-year running averages.
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Something else important that we know is that...

Climate change & its impacts will continue to grow.
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Under the higher emission scenarios, temperatures increase for centuries.

The most worrying recent & emerging insights
about future impacts involve...

* Impacts of climate change on human health: heat
stress, smog intensity, allergies, pathogens & vectors

* Growing extremes of wet & dry: downpours/floods,
droughts, wildfires (T, dryness, pests, lightning)

* Impacts on the coastal zone from the combination of
sea-level rise and increasingly powerful storms

* Impacts of rapid climate change in the Arctic both
inside and outside the region, including coastal
erosion, permafrost melting & methane release, N
Hemisphere extreme weather

* Impacts of ocean heating & acidification on marine
food webs and commercial & subsistence fisheries

11/10/2015
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Extremes of heat will become much more prevalent
NATURE CLIMATE CHANGE | VOL | JANUARY 2015 | winnature com/ naturecimatechane
Dramatically increasing chance of extremely hot
summers since the 2003 European heatwave

Nikolaos Christidis*, Gareth S. Jones and Peter A, Stott

NATURE CLIMATE CHANGE | VOL 4 | DECEMBER 2014 | www.nature.com/natureclimatechange

Rapid increase in the r|sk of extreme summer heat
in Eastern China

Ying Sun', Xuebin Zhang?*, Francis W. Zwiers?, Lianchun Song', Hui Wan?, Ting Hu', Hong Yin'
and Guoyu Ren'

NATURE CLIMATE CHANGE | VOL 5 | JULY 2015 | www.nature.com/natureclimatechange
Future population exposure to US heat extremes

Bryan Jones', Brian C. O'Neill?, Larry McDaniel®, Seth McGinnis?, Linda O. Mearns?®
and Claudia Tebaldi?

Concerning impacts on health

Under BAU, severe heat waves multlply
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Yields of staple crops decline with warming.

Local Warming ("C) for
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8g | = Africa Maize major droughts.
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Global Temperature Change (C)

National Academies, Stabilization Targets, 2010

Multiplying droughts are expected to make it worse.

Frequency of 4-6 month duration droughts (events per 30 years)

Drought defined as soil moisture
below historical 10th percentile value
for that calendar month.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1961-1990

Results shown are the mean of 8
global climate models

Source: Sheffield and Wood 2008 Climate
Dynamics (2008) 31:79-105
DOI 10.1007/s00382-007-0340-z

events per 30 years

2070-2099, IPCC A2 scenario
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Area burned by
wildfires, already
up substantially, is
destined to go up
much more.

Percentage increases shown in
median annual area burned are
for a 1°Crise in global average
temperature, referenced to
1950-2003 averages.

A - Cascade Mixed Forest H - Intermountain Semi-Desert / Desert
B - Northem Roeky Mt. Forest I - Nev-Utah Mountains-Semi-Desert
C - Middle Rocky Mt. Steppe-Forest 1 - South. Roeky Mt. Steppe-Forest

D - Ind Desert

National Academies,
Stabilization Targets,
2010

Severe storms are expected to multiply

PNAS | October8, 2013 | vol. 110 | no.41 | 16361-16366

Robust increases in severe thunderstorm environments
in response to greenhouse forcing

Noah S. Diffenbaugh"", Martin Scherer”, and Robert J. Trapp"

SCIENCE 14 NOVEMBER 2014 » VOL 346 ISSUE 6211 851
Projected increase in lightning
strikes in the United States due to
global warming

David M. Romps,'* Jacob T. Seeley,’ David Vollaro,” John Molinari*

12610-12615 | PNAS | October 13, 2015 | vol. 112 | no. 41

Increased threat of tropical cyclones and coastal
flooding to New York City during the
anthropogenic era

Andra J. Reed™', Michael E. Mann®®, Kerry A. Emanuel, Ning Lin®, Benjamin P. Horton®!, Andrew C. Kemp¥,
and Jeffrey P. Donnelly"

11/10/2015
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Sea level could rise 1-2 meters from 2000 to 2100.
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Rapid climate change in the Arctic

Arctic temperatures are changing 2-4x faster than the global average.

GISTEMP 2014 Anomaly
with respect to 1951-1980 climatology

Temperature Anomaly (°C)

-4.0 -2.0 0.0 2.0 4.0

NASA, 2015

Arctic sea ice is shrinking

September 14, 1984 - September 13, 2012

Sea Ice Concentration (percent)

I
0 50 100

(& GlobalChange.gov

US. Global Change Research Program
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Coastal erosion is imperiling settlements.

Courtesy Gary Braasch

Permafrost is thawing

Russia.

Norwegian Polar Institute, 2009

11/10/2015
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Vast tracts of the Arctic are burning
Bogus Creek fire, near Aniak, Alaska, June 2015

4 » 34

Fires are now occurring in the tundra as well in forested regions:

Courtesy of Nicky Sundt, WWFUS. Photo by Matt Snyder, Alaska Division of Forestry.

Release of methane from the warming Arctic risks
acceleration of warming globally.

Arctic sources of methane

Subsea Methane hydrate

Free gas Climate Emergency Institute, 2015

11/10/2015
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A weakened polar vortex and wavier jet stream
are affecting mid-latitude weather.

Relatively mild

The collision of
cold Arctic air
with the
moisture-laden air
over a warmed
Atlantic was
responsible for
the extreme
snowfall in the
Northeast last
winter.

Graphic by XNR Productions

Scientific American blog, January 2014

Oceans: A warming world challenges productivity.
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Warming waters = coral bleaching

Western Samoa, December 2014 left, February 2015 right (NOAA)

Acidification 2 hard times for critters with shells

Shells Dissolve in Acidified Ocean Water

Pteropods, or “sea butterflies," are eaten by a variety of marine species ranging from
tiny krill to salmon to whales. The photos show what happens to a pteropod's shell

in seawater that is too acidic. On the left is a shell from a live pteropod from a region
in the Southern Ocean where acidity is not too high. The shell on the right is from a
pteropad in a region where the water is more acidic. (Figure source: (left) BednarSek
et al. 2012° (right) Nina Bednarsek).

NCA Highlights 2014

11/10/2015
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The future of corals in
an acidifying ocean

Widespread adverse effects of
acidification were already being
observed in the early 2000s.

The expanding yellow and red
ocean areas are marginal and
unsuitable, respectively, for
supporting coral reefs.

Blue denotes current areas of
reef-building warm-water corals.

Such reefs could be dead or in
peril over most of their range by
mid to late 21st century.

Aragonit saturation

Steffen et al., 2004 B S 3w [ oo B Eunayiow

@ Prosant sites of real-building warm-water corals.

Commercial & subsistence fisheries are at risk

Sciencexpress/ sciencemag.org/content/early/recent / 29 October 2015
Slow adaptation in the face of rapid
warming leads to collapse of the Gulf of
Maine cod fishery

Andrew J. Pershing,'* Michael A. Alexander,? Christina M.
Hernandez,'f Lisa A. Kerr,' Arnault Le Bris,' Katherine E. Mills,’
Janet A. Nye,® Nicholas R. Record,* Hillary A. Scannell,"*} James
D. Scott,>% Graham D. Sherwood,' Andrew C. Thomas®

PNAS | September 1,2015 | vol. 112 | no.35 | 10823-10824

Shifting patterns in Pacific climate, West
Coast salmon survival rates, and increased
volatility in ecosystem services

Nathan J. Mantua’
Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and
Atmospheric Administration, Santa Cruz, CA 95060

11/10/2015
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What We Can Do

Policy options: What are our choices?

There are only three:

» Mitigation, meaning measures to reduce the pace &
magnitude of the changes in global climate being
caused by human activities.

« Adaptation, meaning measures to reduce the
adverse impacts on human well-being resulting from
the changes in climate that do occur.

 Suffering the adverse impacts and societal
disruption that are not avoided by either mitigation or
adaptation.

11/10/2015
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Concerning the three...

» We're already doing some of each.

« What'’s up for grabs is the future mix.

* Minimizing the amount of suffering in that mix can
only be achieved by doing a lot of mitigation and a
lot of adaptation.

— Mitigation alone won’t work because climate change is
already occurring & can’t be stopped quickly.

— Adaptation alone won'’t work because adaptation gets
costlier & less effective as climate change grows.

— We need enough mitigation to avoid the unmanage-
able, enough adaptation to manage the unavoidable.

Mitigation possibilities include...
(CERTAINLY)

* Reduce emissions of greenhouse gases & soot
from the energy sector

 Reduce deforestation; increase reforestation &
afforestation

» Modify agricultural practices to reduce emissions
of greenhouse gases & build up soil carbon

(CONCEIVABLY)

» “Scrub” greenhouse gases from the atmosphere
technologically

» “Geo-engineering” to create cooling effects
offsetting greenhouse heating

11/10/2015
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Adaptation possibilities include...

* Developing heat-, drought-, and salt-resistant crop
varieties

» Strengthening public-health & environmental-
engineering defenses against tropical diseases

* Preserving & enhancing “green infrastructure”
(ecosystem features that protect against extremes)

* Preparing hospitals & transportation systems for
heat waves, power outages, & high water.

 Building dikes and storm-surge barriers against
sea-level rise

* Avoiding further development on flood plains & near
sea level

Many are “win-win”: They’d make sense in any case.

How much mitigation, how soon?
* Limiting AT,,4 to <2°C is now considered by many the
most prudent target that still may be attainable.

— EU embraced this target in 2002, G-8 & G-20 in 2009,
UNFCCC in 2010

» To have a >50% chance of staying below 2°C:

— atmospheric concentration of heat-trapping substances
must stabilize at around 450 ppm CO, equivalent (CO,e);

— to get there, developed-country emissions must peak no
later than 2015 and decline rapidly thereafter, and

— developing-country emissions must peak no later than 2025
and decline rapidly thereafter;

— global emissions in 2050 must be <half of those in 2005.

11/10/2015
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Mitigation: Everybody must play.

Adequate mitigation will require addressing most heat-
trapping substances across most emitting sectors in most
countries.

CO, and non-CO, GHG

GHG Emissions [GHCD ]
& ®

Sectoral sources of global GHG emissions

Eleciricity
and Heat Production -~

E
5% | s

14%

Industry
1%

—— Transport
49GtCOeq 03%
(2010)

—— Buildings [ 30
12%

AFOLU
087%

Direct Emissions Indirect CO, Emissions

Choosing action: President Obama’s Plan

THE PRESIDENT'S CLIMATE ACTION PLAN

° Cut‘“ng Carbon po“u‘“on in Executive Office of the President
America (mitigation)

* Preparing the United States for
the impacts of climate change

(adaptation)

* Leading international efforts to
address climate change
http://www.whitehouse.gov/sites/default/files/image/president27sclimateactionplan.pdf

June 2013

11/10/2015
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How science shaped the CAP

The key understandings from climate science provided:

* the motivation for seeking to develop a cost-effective plan to
reduce those impacts;

* the sense of urgency for doing so now rather than waiting;

* the awareness that such a plan must include both mitigation
and adaptation;

* the knowledge of the sources of the offending emissions and
the character of society’s vulnerabilities to provide
appropriate specificity in designing a plan; and

* the recognition that any U.S. plan must include a component
designed to bring other countries along.

Principal ingredients of the CAP: Mitigation

* Reducing carbon pollution from power plants
— standards for cutting CO, from new power plants (Sept 2013)
— and from existing power plants (June 2014)

* Reducing other greenhouse gases
— interagency strategy to reduce methane emissions (March 2014)
— EPA proposal on hydrofluorocarbons (July 2014)

— 2025 target to reduce methane emissions form the oil and gas
sector by 40-45% from 2012 levels along with various actions to
reduce methane emissions going forward, including EPA
regulation (January 2015)

* Accelerating U.S. leadership on clean energy
* Doubling down on energy end-use efficiency

* Building a 215t-century energy infrastructure

11/10/2015
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Principal ingredients of the CAP: Adaptation

* Directing agencies to support climate preparedness/resilience
— All agencies to develop & implement plans for integrating

climate preparedness/resilience into their missions, policies,
programs, investments, and grants. (Plans released 10-14.)

* Establishing internal & external task forces on resilience

— Interagency Council on Climate-Change Preparedness &
Resilience (~30 Federal agencies); established (11-13)

— State, Local, & Tribal Leaders Task Force on Climate Preparedness
& Resilience (26 elected officials from across the country;
delivered recommendations to the Administration 11-14.)

* Managing flood, drought, and wildfire risks
— Drought Resilience Partnership (11-13); USDA Agriculture Hubs

(2-14); USDA/DOI Wildland Fire Strategy (4-14); HUD Urban
Resilience Competition (6-14); Flood Risk Standard (1-15).

Ingredients of the CAP: Adaptation (continued)

* Mobilizing science and data for climate resilience
—Climate Data Initiative (03-14)
—3rd U.S. National Climate Assessment (05-14)
—U.S. Climate Resilience Toolkit (11-14)

U.S. Climate
* Resilience Get Started  Taking Action Tools Topics Expertise
“£F Toolkit

Identify the Problem
Meet the Challenges of a
Changing Climate
The Climate Resilience Toolkit Investigate Options

Determine Vulnerabilities

provides resources and a framewﬁhe
for understanding and addressing
the climate issues that impa ople”
and their communities. ¥

Evaluate Risks & Costs

Take Action
-

{ sscsne )

toolkit.climate.gov
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Ingredients of the CAP: International

* Enhancing bilateral engagement
— U.S-China Joint Announcement in Nov. 2014 (with national
targets, new joint research & demonstration projects)
—Engagement with Mexico, Brazil, India, Indonesia to encourage
their INDCs.
* Enhancing multilateral engagement
— G-20: Agreement to phase out fossil-fuel subsidies and to
develop a methodology for a voluntary peer-review process
(09-13).
— UN: Pursuit of strong agreement in Paris in December 2015;
commitments & partnerships on international assistance for
preparedness/resilience (09-14).

* Mobilizing clean-energy and preparedness finance

—S3B US contribution to Green Climate Fund; US-German Global
Innovation Lab for Climate Finance

The path forward in the United States

* Defend the requests for clean-energy RD23 and for
Earth observation in the President’s FY16 Budget.

* Finalize EPA’s Power Plant Rules.

* Improve the coverage, usability, and user base of the
Climate Data Initiative and Climate Resilience Toolkit

* Strengthen partnerships across Federal-state-local
governments, private sector, civil society

* Implement the President’s Climate Education and
Literacy Initiative to ensure continuing public support
for all of the above.

* Elect a President in 2016 who will continue and build
on President Obama’s climate-change program.
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The path forward internationally

e Build the public-private-global partnership for
boosting resilience in developing countries
announced at the 09-14 UN Climate Summit.

* Continue to push toward a comprehensive, equitable,
forward-leaning climate agreement in Paris.

* Begin to plan for the challenges of the steep declines
in global emissions that will be needed after 2030.

* To that end, substantially ramp up global research,
development & demonstration of the improved and
new clean-energy technologies that such cuts will
require.

http://www.ostp.gov
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