The Future of Ocean Observing: Challenges and Opportunities

Dr. Anthony H. Knap
Director, Geochemical and Environmental Research Group
James R. Whatley Professor of Geosciences, Texas A&M University

Presidents Council of Advisors for Science and Technology
Washington DC, July 11, 2014
Summary

“You can only manage what you can measure”

The commitment to a Sustained Global Ocean Observing System is essential.

This commitment will require new technologies especially to sensors for biology and chemistry and sufficient globally distributed platforms

Governments and the Private Sector need to work together more
Global Ocean Observing System (GOOS)

World Ocean Observing System proposed by Henry Stommel WHOI.

“John Woods - Panel of the Intergovernmental Oceanographic Commission wanted to create the “Wet Office” – ocean analog to “Met Office”.

Started in 1990 – system to be built out by 2007

In 1989 Stommel wrote an imaginative story about “Gliders” roaming the ocean remotely measuring the ocean from a land based “Mission Control”
Where are the Gaps?

System is not fully built-out – funding issues

Sustainability of systems – not at full operational capacity, many are funded through research programs rather than operational - compete with peer-reviewed science

Deep Ocean (under 2000m) is very under-sampled- issue of technology and cost – Physics more developed than biology and chemistry
There are some winners

Satellites-(sea surface height, Sea Surface temperature, Ocean color for productivity)
Argo
Marine Microbiology/Genomics

Emerging nations are starting to play an important role. South Korea, China, Taiwan, India, Brazil etc. see value in ocean research. (Partnership for Observations of the Global Ocean)

However, we are still a long way from having an integrated and sustained Global Ocean Observing System
From Ships to floats, to gliders to Organisms

By the early 1990s, floats could be deployed anywhere. (Davis/Webb) floats returned from 900m every month.

Five years later, more sensors were added and the Argo Program was born: A global array of 3000 floats, each returning a profile 0-2000m every 10 days.

A related technology, the glider, is a profiling float with positioning control.

Animal Oceanographers in SOOS

- Measure animal behavior
- Diving behavior
- Movement patterns
- Relative to oceanography
- Coverage in sea-ice
- Sensors
 - T = ±0.01°C
 - S = ±0.02 mS
 - Depth 2 dBar ± 0.3
 - Chlorophyll- via fluorescence
 - O² under development
How do Argo floats work?

Argo floats collect a temperature and salinity profile and a trajectory every 10 days, with data returned by satellite and made available within 24 hours via the GTS and internet (http://www.argo.net).

Cost of an Argo T,S profile is ~ $150 (all-inclusive).
Cost of a WOCE T,S profile was ~$15,000.
February 2014 (30 Nations) – 3600 floats
IPCC 5th Assessment Chapter 3 – the importance of the ocean to global heat
The Deep Ocean
Deep floats are being developed and tested by several groups – up to 6,000m
A new CTD sensor is under parallel development with improved stability for the smaller changes in the deep ocean
Oceansites Network (fixed platforms) – mainly physical parameters
Marine Ecosystem Changes are Undersampled

Phytoplankton

Fewer Diatoms

Fewer Coccolithophores

More small phytoplankton (synechococcus)

Mike Lomas, Bigelow
Changes in Ocean CO$_2$ Content

\[\text{pCO}_2 \text{ changes} = +1.38 \text{ to } +2.95 \mu \text{atm year}^{-1} \]

or about 3 to 9% per decade

Seasonal observations are critical to determine changes over a few decades

Bates et al., 2014. *Oceanography*

Bates et al, Ocean Sciences Meeting, Feb 2014
World Ocean Database by Instrument Type

- bottle
- MBT
- XBT
- CTD
- Argo
- drifter
- XCTD
- towed CTD
- glider
- moored buoy
- pinniped

The graph shows the number of observations by instrument type over time from 1900 to 2010.
Gulf of Mexico temperature prior to Rita (Ginis)

Sea Surface

75 m depth

Courtesy Isaac Ginnis
Hurricane Rita rapid intensification due to upper ocean heat content “Live Cat” (Ginis)
Hurricane Rita

Sea Surface

75 m depth

Graduate School of Oceanography
University of Rhode Island

Hurricane RITA: Sea Surface Temperature and Current forecast for 09/24/05 18Z

Graduate School of Oceanography
University of Rhode Island

Hurricane RITA: 75m depth Temperature and Current forecast for 09/24/05 18Z
NOAA Gliders Gulf of Mexico 2012 and 2013
Landlocked? Fewer ships and less money mean getting to sea is increasingly challenging for university researchers.

Scientists Are Spending Less Time at Sea

<table>
<thead>
<tr>
<th>Year</th>
<th>Ship days funded</th>
<th>Ship days available</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>6000</td>
<td>7000</td>
</tr>
<tr>
<td>2005</td>
<td>5500</td>
<td>6500</td>
</tr>
<tr>
<td>2006</td>
<td>5000</td>
<td>5500</td>
</tr>
<tr>
<td>2007</td>
<td>4500</td>
<td>5000</td>
</tr>
<tr>
<td>2008</td>
<td>4000</td>
<td>4500</td>
</tr>
<tr>
<td>2009</td>
<td>3500</td>
<td>4000</td>
</tr>
<tr>
<td>2010</td>
<td>3000</td>
<td>3500</td>
</tr>
<tr>
<td>2011</td>
<td>2500</td>
<td>3000</td>
</tr>
<tr>
<td>2012</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>2013</td>
<td>1500</td>
<td>2000</td>
</tr>
</tbody>
</table>

... And the Academic Research Fleet Is Shrinking

<table>
<thead>
<tr>
<th>Vessel</th>
<th>2001 (28 Total)</th>
<th>2025 (13 Forecast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>70 m – 85 m</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>45 m – 70 m</td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>20 m – 44 m</td>
<td></td>
</tr>
</tbody>
</table>

E Kintisch Science 2013;339:1138-1143
Emerging Technologies Autonomous Surface Vehicles (wave powered) - Deep Ocean Gliders
Global-scale oceanography (including ocean temperature measurements) began with the Challenger Expedition (1872 – 1876) (Wijffels/Roemmich)

HMS Challenger

Track of the Challenger Expedition, 1872-1876
Return of the Challenger 140th year (Rutgers)