

QUADRENNIAL ENERGY REVIEW

ENERGY TRANSMISSION, STORAGE, AND DISTRIBUTION INFRASTRUCTURE

Briefing for PCAST- May 15, 2015

Fundamental Changes in the U.S. Energy Sector

Increasing Energy Production

- Natural gas production growth
- Oil production growth
- Intermittent renewables
- Distributed generation/energy resources
- Increased generation/production/demand efficiency

Policy Developments

- → CAFE
- Clean Air Act -111 (d), other
- Clean Water Act/other
- → RFS
- → RPS (state)
- → RGGI (regional)

Technology Advances

- Solar (central and rooftop)
- Wind
- Demand-side
- Hydraulic fracturing

Energy Security Changes

- Decreased N. American energy imports
- Climate change impacts
- Vulnerabilities more evident, including aging infrastructures, physical and cyber threats
- Increased interdependencies
- Increased energy support required by allies

PM on the Quadrennial Energy Review

THE WHITE HOUSE

Office of the Press Secretary

For Immediate Release

January 9, 2014

January 9, 2014

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

SUBJECT: Establishing a Quadrennial Energy Review

Affordable, clean, and secure energy and energy services are essential for improving U.S. economic productivity, enhancing our quality of life, protecting our environment, and ensuring our Nation's security. Achieving these goals requires a comprehensive and integrated energy strategy resulting from interagency dialogue and active engagement of external stakeholders. To help the Federal Government better meet this responsibility, I am directing the undertaking of a Quadrennial Energy Review.

"Affordable, clean, and secure energy and energy services are essential for improving U.S. economic productivity, enhancing our quality of life, protecting our environment, and ensuring our Nation's security.

Achieving these goals requires a comprehensive and integrated energy strategy resulting from interagency dialogue and active engagement of external stakeholders.

To help the Federal Government better meet this responsibility, I am directing the undertaking of a Quadrennial Energy Review."

President Barack Obama January 9, 2014

- Integrated view of short, intermediate, long-term objectives for Federal energy policy;
- Outline of legislative proposals to Congress;
- Executive actions (programmatic, regulatory, fiscal, etc.) across multiple agencies;
- Resource requirements for RD&D and incentive programs; and
- Strong analytical base for decision-making.
- **First year focus** on TS&D infrastructure including: electricity transmission and distribution systems, liquid and gas pipelines, export infrastructure; interdependencies; climate and environment.

Framing TS&D Infrastructure

- The United States has one of the most advanced energy systems in the world
- The energy transmission, storage, and distribution (TS&D) infrastructure is increasingly complex and interdependent
- It must handle demanding system requirements (e.g., 24/365, on-demand, highlyreliable energy)
- The longevity and high capital costs mean that TS&D infrastructure decisions today will affect the national energy system for decades to come

Vulnerabilities and Disruptions: Natural Disasters

Tornado and Hurricane Tracks, Wildfires, Earthquakes, and Coastal Inundation

Vulnerabilities and Disruptions: Natural Disasters

Tornado and Hurricane Tracks, Wildfires, Earthquakes, and Coastal Inundation

Increased Intense Precipitation Events (Heaviest 1% of All Daily Events, 1958-2012)

Gulf Coast Electricity Substation Facilities' Exposure to Storm Surge under Different Sea-Level Rise Scenarios

Billion-Dollar Disaster Event Types by Year (1980-2014)

Vulnerabilities and Disruptions: Electricity Outages

Observed Outages to the Bulk Electric System (1992-2012)

Electricity Outages by Type of Event and Lost Customer Hours

Utility Workforce

Utility Workforce Trends

Utility Employment and Median Age Trends

(as a % of total)

Over 60% of the workers in electric and gas utilities are eligible to retire or leave the industry within a decade.

Source: U.S. Bureau of Labor Statistics and CEWD.

Potential Retirements

(as a % of total utility workers)

Source:

http://www.harriswilliams.com/sites/default/files/industry_reports/ep_td_white_paper_06_10_14_final.pdf?cm_mid=3575875_ &cm_crmid=e5418e44-29ef-e211-9e7f-00505695730e&cm_medium=email

New Investment: Electricity

Historic and Projected
Expansion of Net
Transmission Circuit Miles
(1960-2015)

Reported Drivers of Projected
Transmission Addition
(2011-2015)

Supply/Infrastructure: Oil and Gas

Highlighted Pipeline Reversals and Expansions Accommodating Increased Domestic and Canadian Supply

U.S. Crude Oil Production by PADD

Importance of Gas Transmission Infrastructure

Vulnerabilities and Disruptions: Pipeline Leaks

Methane Emissions from Natural Gas Distribution Systems in Indianapolis and Boston (2013)

Emissions Rate

- Low (The same near-term climate impacts as driving a car between 100 and 1,000 miles everyday. Rate: 700 to 9,000 liters/day.)
- Medium (The same near-term climate impacts as driving a car between 1,000 and 9,000 miles everyday. Rate: 700 to 9,000 to 60,000 liters/day.)
- High (The same near-term climate impacts as driving a car more than 9,000 miles everyday. Rate: More than 60,000 liters/day.)

Expected Replacement Horizons (Forecasted Timeframe in Years)

Utility Company	Service Territory	State	Forecasted Timeframe (years)	
Philadelphia Gas Works	Philadelphia, PA	PA		84
ConEd	New York, NY	NY		35
PECO	Greater Philadelphia, PA	PA		33
PSE&G	Newark, NJ	NJ		30
Pensacola Energy	Pensacola, FL	FL		30
Baltimore Gas Company	Baltimore, MD	MD		30
UGI	Rural Pennsylvania	PA		27
Consumers Energy	Detroit, MI	MI		25
DTE	Detroit, MI	MI		25
National Grid	New York, NY	NY		25
Dominion Hope Gas Co.	Ohio	OH		20
Yankee Gas Services Company	Rural Connecticut	CT		20
Peoples Gas	Chicago, IL	IL		20
National Grid - Niagra Mohawk	Rhode Island	RI		19
Peoples TWP	Southwestern Pennsylvania	PA		19
Peoples Natural Gas Co.	Southwestern Pennsylvania	PA		17
National Grid - Niagra Mohawk	Syracuse, NY	NY		16
Columbia Gas of Pennsylvania	Southwestern Pennsylvania	PA		15
Northern Utilities	Maine	ME		13
CenterPoint	Arkansas	AR		12

Modernizing the Strategic Petroleum Reserve (SPR)

SPR Infrastructure in the Gulf of Mexico region

Selected SPR Findings

- The SPR was designed to respond to oil embargoes -- to move oil from south to north, and to inland refineries
- Today, the SPR's value is to move oil onto the water and into global oil markets in the event of a disruption, thereby lowering world oil prices and reducing economic harm to the US and its allies
- Congestion in the Gulf of Mexico is significant. Use of the SPR in the Libyan action had limited impact as it displaced some domestic production.
- Design drawdown rate of the SPR:4.4 million barrels per day
- The SPR is 40 years old

Supply/Infrastructure: Rail

Crude Oil by Train Loading (red) and Offloading (green) Facilities 2010

Crude Oil by Train Loading (red) and Offloading (green) Facilities 2013

Class I Railcars of U.S. Crude Oil (Quarterly, 2009–2014)

Coal-Fired Power Plants Supplied by the Powder River Basin

Supply/Infrastructure: Waterways

Lake Charles Ship Channel design specs

Current channel conditions

Hours of Lock Unavailability on U.S. Inland Waterways (2000-2014)

North America

Selected Recommendations

- Continue advances that have been made in the North American energy dialogue
- Increase the integration of energy data among the United States, Canada, and Mexico
- Undertake comparative and joint energy system modeling, planning, and forecasting
- Establish programs for academic institutions and not-for-profits to develop legal, regulatory, and policy roadmaps for harmonizing regulations across borders
- Coordinate training and encourage professional interactions
- Partner with Canada and the Arctic Council on Arctic energy safety, reliability, and environmental protection
- Partner with Canada and the Arctic Council on energy delivery to remote areas
- Promote Caribbean energy TS&D infrastructure

North American Energy Flows

"Building a resilient, reliable, safe, and secure energy infrastructure is a national priority and vital to American competitiveness, jobs, energy security, and a clean energy future."

The Quadrennial Energy Review, April 2015

SELECT RECOMMENDATIONS

Smart Grid of the Future

- Grid Modernization* (\$3.5B)
- Grants for state and multi-state grid reliability planning* (\$300-\$350M)
- Value new services and technologies
- Conduct national review of transmission plans and assess barriers to their implementation

Modernizing Global Energy Security Infrastructures

- SPR modernization and life extension (\$1.5-\$2B)
- G-7 Collective Energy Security Initiative

Resiliency, Recovery, Safety and Asset Recovery

- Implementation Grants
 for Energy System
 Hardening (\$3-\$5B)
- Rate Mitigation for accelerated NG distribution pipe replacement (\$2.5-\$3.5B)
- State Energy
 Assurance/Resiliency
 Planning Grants*
 (\$350-\$500M,
 depending on 2 or 3
 year cycle)
- Strategic Transformer Reserve

Improvements to Shared Infrastructure

ASSETS grants for energy-intensive connector projects (\$2-\$2.5B)

Integrating North American Energy Markets

- Enhance North
 American energy
 integration through
 cooperative measure
 with Canada and
 Mexico
- Caribbean Renewables/LNG project planning support

