From: BRI = |

Tor e
Subject: bitemarks

Date: Friday, December 2, 2016 8:27:09 PM

Dear Dr. Lander,

| have just been notified by the AAFS that your Council is requesting additional information on certain
pattern-matching disciplines used in US criminal courts. This attachment is a recently published journal
article that, in my opinion, is material to your continuing review of bitemark analysis involving injury
patterns on human skin. It may prove to be a counter-point to any other material your request for bitemark
validation data may produce. Please pardon me if your subcommittee has already seen the material.

https://academic. om/jlb/article/2544494/Forensic-bi i ification-weak-foundations

Regards,

C. Michael Bowers DDS JD
Fellow, AAFS, Odontology
Author: Forensic Testimony: Science, Law and Expert Evidence

Salus populi suprema lex

"Public safety is the highest law"

CONFIDENTIALITY NOTICE:

This message is being sent by or on behalf of a lawyer. This message is covered by the Electronic
Communication Privacy Act, 18 U.S.C. Sections 2510-2515, it is intended for the sole use of the intended
recipient and may contain information, which is privileged, confidential, or otherwise legally exempt from
disclosure. If you received this message in error, please notify the sender immediately by replying to this
e-mail, by telephone at (805-701-3024) and delete all copies of the message from your computer.



From:
To:

Ce:
Subject: Re: Invitation to Provide Follow-up Information to PCAST Regarding its Forens...
Date: Sunday, December 4, 2016 6:50:45 PM

Dear Dr. Lander:

Thank you and colleagues for sharing this important information. | do not have additional reports or references
to suggest. However, in my experience, sample contamination due to problems in chain-of-custody and
mishandling can cause unrecognized errors in DNA and other analyses. | once demonstrated this point in a
presentation | gave at an AAFS meeting on the mathematics and use of PCR.

Itis suggested that a special research program be established to examine fundamental aspects of
contamination that impact on the areas in the report. | think this can be an overriding issue to the many topics
included in the report provided to AAFS members and others.

Many thanks.
Sincerely yours,
Walter

Walter E. Goldstein, Ph.D., PE
President

Goldstein Consulting Company

120 Emerald Forest Street, Unit #103
Las Vegas, Nevada 89145-3987

www.goldconsul.com



From: jieber, Frederick R.,Ph.D.

Cc:
Subject: forensic DNA mixtures
Date: Monday, December 5, 2016 4:25:28 PM

Re: DNA mixtures
Dear Dr. Lander and members of PCAST:

Within the limits of time, | offer your team some brief comments in response to your recent email
about accuracy of various forensic methods currently in use. There is, as you know, a large body of
published literature on DNA mixture interpretation and validation using new software tools. The
large amount of developmental validation work on DNA mixtures, performed internally by forensic
laboratories, is not typically published as it is not considered “original research”. The FBI DNA
Advisory Board, NRCII, and other international groups (e.g., ISFG) have carefully considered mixtures
as well. Whether individual laboratories follow appropriate recommended practices in individual
cases is a different question that needs resolution at the local level.

Interpretation of evidentiary DNA mixtures is of great import to the forensic community. A general
comment, worthy of note, applies to interpretation of forensic DNA mixtures when different swabs
are joined together for DNA extraction, subsequent PCR amplification, and STR analysis. First, while
merging swabs from different sources, or from different swabs of the same item, a mixture can be
created where none actually existed. Second, the different swabs could contain different amounts
of DNA from one or more individuals, leading to confusion about major/minor contributors in any
mixture that is detected. Third, an individual could be falsely implicated as having
handled/possessed an item when he did not, if his DNA was present on only one of the components
of the mixture which was created by this common laboratory practice. This comment, while
important in a general sense, is not relevant to all cases.

In your consideration of forensic DNA mixture interpretation, please be reminded that the most
difficult/challenging forensic DNA mixtures are NOT those in which there are unequal contributions
from 2 or 3 contributors, but rather mixtures with equivalent, or nearly equivalent, contributions
from 2 (or 3, or 4) contributors. For example, a 10:4:1 mixture would often be easier to interpret
(using CPI or newly developed software tools) than a 3:2:1 or a 2:1:1 mixture, assuming of course
that sufficient DNA is present in the minor component to meet validation thresholds for allele
calling.

All forensic mixtures are NOT created equal, as they range from the straightforward and simple to
the most challenging and irresolvable. Even the new probabilistic genotyping methods can present
practical challenges, to wit:

1. The two competing hypotheses (e.g., the numerator and the denominator in the likelihood
ratios) are chosen by the laboratory, often without consultation with the advocates (i.e., the
prosecutor and defense counsel) and without knowledge of the so-called fact pattern in the
instant case.

2. The probabilistic genotyping software requires an “assumption” of the number of



contributors for each “run”.

3. The Markov chain Monte Carlo {MCMC) methods used by some of the new software will
produce a slightly different output each time the same mixture is input,,,which could lead to
downstream confusion in the courtroom....this will need to be addressed in teaching to
judges, attorneys, juries, et al.

If 1 have more time before your December 14% deadline { will write more.
Best regards,

Fred B.

Frederick R. Bieber
Medical Geneticist, Brigham and Women's Hospital

Assaociate Professor of Pathology
Harvard Medical School

The information in this e-mail is intended only for the person to whom it is
addressed, If you believe this ¢-mail was sent to you in etror and the e-mail
contains patient information, please contact the Partners Compliance HelpLine at
http://www .partners.org/complianceline . If the e-mail was sent to you in etror
but does not contain patient information, please contact the sender and properly
dispose of the e-mail.



From: e

Tot (|
Cc: [HE
Subject: feedback on PCAST Forensic Science Report
Date: Wednesday, December 7, 2016 11:59:47 AM

Attachments: pcast forensic science report final.pdf

To Whom It May Concern:
There are two instances where the term “voiceprint” is used in this document. The term “voiceprint”
is problematic and is not used the by scientific forensic voice comparison community. We are trying
to extinguish the use of this word which equates the human voice as a biometric with fingerprints.
Speaking scientifically, fingerprint patterns do not change from moment to moment or day to day;
and very little within a person’s lifetime. The human voice, however, is a highly dynamic signal which
undergoes changes throughout the day, many times within a person’s life, and depending on mood
and meaning of communication. Equating fingerprints to the voice is dangerous especially as so-
called private experts working on forensic voice comparison cases convince juries, etc. of that this
fallacy is true.
| would suggest changing language in the document as follows:

- Page 46 "voice samples”

- Page 64 "voice comparison”

4

Thanks, Jeff

Jeff M. Smith
Associate Director
National Center for Media Forensics
College of Arts & Media
University of Colorado Denver




From:

To:
Subject: INTERPOL literature reviews by forensic discipline
Date: Thursday, December 8, 2016 4:12:05 PM

Every three years forensic experts from around the world gather at INTERPOL headquarters in Lyon, France to discuss the literature in various
forensic science disciplines. Unfortunately, until recently these literature listings were not available on a public website. Review articles from the
last two INTERPOL meetings (held in October 2013 and October 2016) can now be downloaded from their website:

hitps://www.interpolint/INTERPOL -expertise/Forensics/Forensic-Symposium.

My summary of their contents is included below along with direct links to the full documents covering literature from 2010-2016. While many
articles are cited in these reviews, there is typically not a lot of analysis to demonstrate how these articles may or may not establish any kind of
foundational validity or assist in estimating the accuracy of provided methods.

- John Butler, National Institute of Standards and Technology

The 2013-2016 INTERPOL Literature Summary
contains 4891 references to the following disciplines:

4/426506/version NTERPOL%2018th% (769 page,

RSAWWW.LIN ROLIN ontent/downioad

[
8.5 MB pdf file

Firearms Erwin .A.T. Mattijseen (Netherlands Forensic Institute) 179

Forensic Geosciences Lorna Dawson (James Hutton Institute, Aberdeen, UK) 245

T — Séba}tien Charles, Bart Nys, Nadia Geusens (INCC-NICC Brussels, 77
Belgium)

Marks Martin Baiker {Netherlands Forensic Institute) 104

Paint and Glass Jose Almirall (Florida International University, USA) 102

Fibers and Textiles l.aur.ent Lepot, Kris De Wael, Kyra Lunstroot (INCC-NICC Brussels, &
Belgium)

Fire Investigation & Debris Analysis Eric Stauffer (University of Lausanne, Switzerland) 194

Explosives Douglas J. Klapec and Greg Czarncpys (ATF Laboratory, USA) 646

Drugs Robert F.X. Klein (Drug Enforcement Administration Laboratory, USA) 1434

Wing-man Lee, Kwok-leung Dao, Wing-sum Chan, Tai-wai Wong, Chi-
Toxicology wai Hung, Yau-Nga Wong, Lok-hang Tong, Kit-mai Fung, Chung-wing 600
Leung (Hong Kong Government Laboratory, China)

Catalin Grigoras, Andrzej Drygajlo, Jeff M. Smith (University of
Audio Colorado-Denver, USA and Ecole Polytechnique Fédérale de Lausanne, 88
Switzerland)

Video and Imaging Arnout Ruifrok, Zeno Geradts, {Netherlands Forensic Institute) 108

Digital Evidence Paul Reedy (Department of Forensic Science, District of Columbia, USA) 100

Andy Bécue and Christophe Champod (University of Lausanne,

Fingermarks and Other Impressions 536
g pressi Switzerland)
is-Xavi e Institut National de Poli
DNA and Biological Evidence Frfmc(.)l.s Xavier Laurent and Laurent Pene (Ins ational de Police 75
Scientifique, Cedex, France)
Questioned Documents Julien Retailleau {IRCGN, Pantoise, France) 255
Forensic Science Managament William P. McAndrew (Gannon University, Erie, PA, USA) and Max M. 56

Houck (Forensic & Intelligence Services LLC, USA)

The 2010-2013 INTERPOL Literature Summary

contains 4832 references to the following disciplines:
https://www.interpol.int/content/download/21910/206602 /version/1/file/IFSMSReviewPapers2013.pdf (928 pages; 3.9 MB pdf file)



Authors (affiliations)

# references

Firearms Erwin J.A.T. Mattijseen (Netherlands Forensic Instilute) 159

Gun Shot Residue Sébastien Charles and Bart Nys (INCC-NICC Brussels, Belgium) 49

Toolmarks Nadav Levin (Israel National Police) 189
f Laetitia Heudt, Marc Lannoy, Gilbert De Roy, Laurent Kohler (INCC-NICC

Paint Brussels, Belgium) 201

Fibers and Textiles Ray Palmer (Northumbria University, UK) 68

Forensic Geology

Ritsuko Sugita, Hiromi Itamiya, Hirofumi Fukushima (Nalional Research Institute
of Police Science, Japan)

221 cited but only 102
references listed

Arson & Fire Debris Analysis

Niina Viitala and Mika Hyypp4 (National Bureau of Investigation, Fintand)

157 cited but only 140
references listed

Douglas J. Klapec and Greg Czamopys (Bureau of Alcohol, Tobacco, Firearms

Explosives & Explosive Residues Explosives, USA) 1341
Drug Evidence MWWH F.X. Klein (Drug Enforcement Administration, 668
S0 LT
Wai-ming Tam, Lai-chu Chim, Wing-sum Chan, Tai-wai Wong, Kit-mai Fung,
Toxicology Wing-cheong Wong, Wai-kit Lee, Wing-sze Lee, Kit-man Fan (Hong Kong 324
Government Laboratory)
. . : Catalin Grigoras, Jeff M. Smith, Geoffrey Stewart Morrison, Ewald Enzinger
Forensic Audio Analysis (University of Colorado-Denver, USA and University of New South Wales, 133
Australia)
Forensic Video Analysis Matthew E. Graves (United States Army Criminal Investigation Laboratory) 31
Imaging Arnout Ruifrok, Zeno Geradts, Jerrien Bijhold (Netherlands Forensic Institute) 256 °
Fpor : Paul Reedy and Jaime Buzzeo (Department of Forensic Science, District of
Digital Evidence Columbia and A 1. Solutions at NASA Headquarters, USA) 190
Fingermarks and Other Nicole Egli, Sébastien Moret, Andy Bécue, Christophe Champod (University of 472
Impressions Lausanne, Switzerland)
Body Fluid ldentification and DNA i " s : ; ;
Typing in Forensic Biology Christine Jolicoeur (Ministry of Public Security, Québec, Canada) 114
Questioned Documents Franck Partouche (IRCGN, Rosny Sous Bois, France) 275
Forensic Science Management Max M. Houck, Melissa Porter, Bronwen Davies (Department of Forensic 120

Sciences and George Washington University, Washington, DC, USA)




From: [

To: e Fasi]

Cc:

Subject: Re: Footwear analysis

Date: Sunday, December 11, 2016 11:46:19 AM
Attachments: PIIS0379073816304455.pdf

Sorry, the paper by Dr. Speir can be found at :https:/dx.doi.org/10.1016/j.
forsciint.2016.06.012
Attached.

On Sun, Dec 11, 2016 at 5:22 PM, Yaron Shor <gii R, > vrote:

Eric Lander
- Co-Chair, PCAST

)

' Hello Mr. Lander

I’'m writing to you on behalf of Mr. Nadav Levin from Israel, and our
research team that includes: Dr. Yoram Yekutieli, Sarena Wiesner, Tsadok
- Tsach and myself.

Our research "Expert Assisting Computerized System for Evaluating the Degree

- of Certainty in 2D Shoeprints" was posted in the NIJ site after peer review by
three reviewers. It might not be a scientific journal, and the paper about the
research is on the way, but we feel that it will be beneficial to the field if the
results will be mentioned in the PCAST report. The research was thorough and
provided good scientific foundation to the accidental high value and
discriminating opportunities. The big database of accidentals (RACs) and the
algorithms developed in the project, show how a reliable estimation about the
rarity of accidentals on shoe sole can be found and be shown.

The report was posted to NCJRS.gov on November 15" the link below:

h //www.ncjrs.gov/pdffiles1/nii/grants/250336.pdf

Another paper that was written by our colleague, Jacqulin Speir titled
"Quantitative Assessment of Similarity between Randomly Acquired
Characteristics on High Quality Exemplars and Crime Scene Impressions via



Analysis of Feature Size and Shape". can be found at:
file:///C:/Users/Administrator/Downloads/PIIS0379073816304455..pdf

Dr. Speir also conducted a big research on RACs and their rarity, and her
conclusions support the hypothesis that accidentals on shoe-sole can establish, in a
scientific method, the base for the discriminating power shoe prints are supposed
to establish.

We hope these papers will be mentioned in the next publication of PCAST.

Thanks
Yaron Shor
Israel Police HO,

DIFS, Toolmarks and Materials Lab.




Midwestern Association of Forensic Scientists Response to
PCAST Report- December 12", 2016

The President’s Council of Advisors on Science and Technology (PCAST) has issued a Report to the
President on Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison
Methods, hereinafter referred to as PCAST Report. The PCAST report broadly defines Forensic Science,
but quickly characterizes its goal to help close gaps "for the case of forensic 'feature-comparison'
methods" and chooses to narrowly focus mainly on six forensic disciplines, (1) DNA analysis of single-
source and simple-mixture samples, (2) DNA analysis of complex-mixture samples, (3) bite-marks, (4)
latent fingerprints, (5) firearms identification, and (6) footwear analysis.

The Midwestern Association of Forensic Scientists (MAFS) would like to first acknowledge that the
PCAST report makes some very good points that should be commended. Among many of the reports
suggestions to the forensic science and legal communities are to strengthen "foundational validity",
strengthen the measurement of uncertainty in conclusions, increase clarity in testimony, avoid
scientifically indefensible claims, abate contextual bias and eliminate conformational bias. These
suggestions are noteworthy and common goals of not only MAFS, but we would posit, all Forensic
Scientists,

Where we believe the report fell short is to first not recognize the valuable contribution forensic science
has provided to the criminal justice system. Many lives have been saved and victims vindicated by the
work forensic scientists do every day. Secondly, as with any scientific profession we recognize that our
science can always be improved, but for PCAST to broadly characterize it as lacking foundational or
scientific validity is capricious. PCAST might not agree with the approach of much of the foundational
research, but that does not discount that a considerable amount of research has been completed in
each one of the disciplines targeted by this report.

More specifically, with regard to scientific research methods and validity, the PCAST report is replete
with suggestions and assertions that "evaluations of validity and reliability must therefore be based on
'black-box studies'. Where we agree that black box studies can be useful or perhaps even essential, they
certainly are not the only scientific way to ensure validity and reliability.

With regard to Proficiency testing, again MAFS would agree that proficiency testing can be improved
and perhaps be more rigorous. While we can tacitly agree with the statement that "the only way to
establish scientifically that an examiner is capable of applying a foundationally valid method is through
appropriate empirical testing to measure how often the examiner gets the correct answer" we would
disagree with the statement that "Such empirical testing is often referred to as 'proficiency testing™.
MAFS does understand that PCAST and the Forensic Community may have differing opinions on the
definition of Proficiency Test; however empirical testing is commonly known in the sciences as
originating in or based on observation or experience and it is our opinion that the PCAST report is too
quick to discount experience. Empirical testing of an examiner’s abilities should be defined to include
training exercises, mock cases, competency tests, validation studies, and case work experience, in
addition to proficiency testing. These are all components of training and case work that are continually



MAFS Response to PCAST P.2

performed in forensic laboratories. Experience and daily observation should not be discounted since the
accumulation of training, testing and experience adds to the empirical knowledge of our particular
discipline. Medical Doctors are not “proficiency tested" in their ability to diagnose the common celd, or
even cancer; instead they rely on their experience and training. Mareover, where PCAST suggests "a
forensic examiner’s 'experience’ from extensive casework is not informative—because the 'right
answers' are not typically known'", we would posit that when a physician diagnoses the common cold,
the right answer is "not known" either but he or she is relying heavily on experience {as well as other
factors, seasonal, etc.).

MAFS strongly disagrees with the characterization that the "forensic community prefers that tests not
be too challenging”. This is an assertion based on one comment, and an opinion at that, by one
president, from one test provider. This report is fraught with rhetoric about rigorous research,
reproducibility, repeatability, etc. and it appears contradictory and careless to make such a hyperbolic
statement based upon one person's opinion.

Regarding funding, we again agree with the PCAST report that in order to move forward with theijr
suggestions to strengthen the science, more funding is needed; however, we disagree with their specific
recommendations. PCAST recommends $4 million to support efforts to make methods "established as
foundationally valid" which is predominately what the entire report is about; on this we marginally
agree; however, then PCAST recommends "$10 million to support increased research activities in
forensic science, including on complex DNA mixtures, latent fingerprints, voice/speaker recognition, and
face/firis biometrics." With all due respect to the DNA community, a considerable amount of funding is
already available through the current DNA Capacity Enhancement and Backlog Reduction {CEBR)
Program. Perhaps the more egregious recommendation regarding funding is that of voice/speaker
recognition, and face/iris biometrics. We find it puzzling to suggest funding for voice/speaker
recognition, and face/iris biometrics when neither technology is mentioned as a concern in this report,
We assert that the funding should go to research in the forensic science disciplines that are in fact the
cause of the concern.

Lastly, with regard to many of the recommendations, for example establishing foundational validity and
proficiency testing, PCAST recommends the involvement of independent scientists without direct
forensic science experience or as stated in the report "which has no stake in the ocutcome". Where we
would welcome more involvement from the academic community, statisticians, etc. and believe their
involvement can only strengthen our science, we all know that science is about collaboration, discussion
and debate. To not include practitioners in the discussion would be irresponsible.

Although we may disagree on many points that the PCAST report makes, the Midwestern Association of
Forensic Scientists would like to thank PCAST for its work. We understand that the undertaking was
immense and that we are not always going to agree, but we do stand united and ready to strengthen
our science whenever and wherever the opportunity arises.




From: = ==

To: T e |
Subject: response to PCAST
Date: Tuesday, December 13, 2016 11:26:27 AM

Attachments: Koch response to PCAST.docx

I'd like to offer the attached review of hair analysis, foundational research, points of clarification, and reference list
for PCAST to consider.

Sincerely,

Sandra Koch, F-ABC

PhD Candidate

Pennsylvania State University
Department of Anthropology



Forensic analysis of hair draws upon research from multiple disciplines: anthropological analysis of
human variation, biology for aspects related to growth and development of the hair, the cosmetic
industry for how artificial treatment affects hair structure, genetics for the search for links between
genotype and phenotype, and forensic science for species identification and comparison between
guestioned and known samples, PCAST seemed to only look at forensic articles. Much of the
foundational research, which is still valid, was conducted by anthropologists focused on identifying
characteristics in hairs that would help differentiate ancestry such as macroscopic hair form {e.g. Turner
et al. 1914; Trotter, 1938). Their early empirical studies focused on ancestry characterization through
documentation and measurement of macroscopic hair form {e.g. Prunner-Bey, 1877; Saint-Hillaire,
1860; Trotter 1930, 1934, 1936, 1956). Mildred Trotter calculated the area of hair sections collected
from numerous individuals within different population groups and separated by age and sex to
determine the variation present in hair form by measuring the major and minor axis of the hair shaft
cross sections (% greatest diameter x % least diameter x ). Guilbeau-Frugier et al. {2006) found that
hair form area calculations were able to differentiate the broad ancestry groups of European, Sub-
Saharan African, and Asian populations but some populations overlapped to an extent that
differentiation was not possible by calculation of hair shaft area, such as between European and North
African populations. Hair classifications often fall into a continuum and are not easily differentiable into
categories by discrete characteristics; however, forensic hair examiners are trained microscopists who
consider all features when examining an evidential hair.

Research focused on specific layers of a hair has also added to our understanding of human variation
and the features that can be useful in a microscopical comparison. Takahashi et af. (2015) noted
differential compaction of the cuticle layers but that there were similar numbers of layers among
different groups of peoples. Wynkoop (1929) distinguished 4 medullary types while Hausman {1930)
reduced those types to the presence or absence of a medulla and attempted to determine if there was a
correlation with hair diameter. Duggins and Trotter (1950} were unable to find a correlation between
medullary types, the diameter of a hair, or the age of the individual. Banerjee’s (1965) study showed
that despite Hausman's (1930) early research which indicated a correlation, that the medullary structure
does not have a clear relationship with hair form. Hrdy (1973} suggested the presence of a medulla and
its thickness was correlated with overall hair diameter, most notably in individuals of Asian ancestry, but
he aiso noted populations where this correlation was not held up, specifically between individuals from
African and New Guinean individuals. From these works, the caution is to not emphasize the presence or
absence of a specific feature as being associated with an ancestry group as there are degrees of human
variation. Forensic microscopists take into account the hair form, the changes in diameter along the
length of a hair, the thickness of the cuticle, etc. and use all the features visible in a hair to compare
samples in order to decide whether to include or exclude a known sample as a potential source. This is
not an identification and forensic hair examiners clearly state the limitations to microscopical
examinations in their reports and testimony along with stating a need for the same hair to be analyzed
by mitochondrial DNA (mtDNA} should identification be important to a case (if such statements are
allowed by their agency).

Research by Kajiura{2006), Bryson et al. (2007), and Fugimoto et al. (2008) focused on potential links

between hair form with genetic ancestry (African, Caucasian, and Asian) but more research is needed
here. Hair examiners also rely on research from a variety of disciplines which seek to understand hair
microstructure and changes to hair over the life of an individual, from death as well as environmental




changes such as deposition at a crime scene (Bryson, et al., 2009; Duggins 1954, Trotter and Duggins,
1948 and 1950; Koch et al., 2013; Hietpas et al., 2016; Roberts et al., 2016; Tridico et al. 2015; etc.). The
PCAST committee appears to not have considered the foundational research from anthropology, or any
of the additional research in biological or cosmetic research fields from which forensic hair examiners
gain much knowledge.

turge PCAST to use their platform not to denigrate specific scientific disciplines or methods
(microscopical analysis is a valid comparison tool) but to urge laboratories who have gotten rid of
microscopical analysis to bring it back as it is a useful and inexpensive screening technique with well-
trained microscopists. Those who rush to send a hair for DNA analysis without first conducting a
microscopical analysis destroy potentially valuable information — whether the hair was dyed, if there is
evidence of decomposition, potential ancestry determinations, if a hair contains similar internal
patterning of pigment granules, etc. This information along with the determination of whether a known
sample can be included or not {microscopical hair analysis is not an identification but class type
evidence) and then DNA analyses can and should be conducted. Not all evidential hairs have sufficient
tissue for a nuclear DNA analysis and mitochondrial DNA is not a means of identification, but the
combination of microscopy and mtDNA is stronger evidence about a hair and that combination should
be pushed for in all labs and courts throughout the US. This combination was the point of the Houck and
Budowle paper and one that PCAST appeared to misunderstand. The regional mtDNA labs, previously
funded and trained by the FBI, should be brought back so hair evidence throughout the US can benefit
from both microscopical and mitochondrial analysis prior to being presented in court. Microscopy can
differentiate hairs between populations and individuals at a rate greater than chance alone as shown by
the Houck and Budowle {2002) paper, Gaudette and Keeping, 1974, and Strauss, 1983 among others.
Combining microscopy with mtDNA analysis increases the ability to further discriminate hairs among
individuals. Stressing the need for the combination of techniques is where | believe PCAST can best use
its influence,

| strongly caution the ptacement of any “science-based agency” being placed on a pedestal as being
more scientifically reliable than bench scientists. NiST is not known to have scientists with a background
in microscopical analysis of halrs, As the training and experience of a hair examiner is crucial to the
reliability of this discipline, PCAST should strongly encourage NIST, NlJ, and academic researchers to
include qualified hair examiners in their future research projects involving hair. This is critical to ensure
any new research will be usefui for forensic applications and be able to be easily adopted into state and
local laboratory protocols for hair analysis. The guidance this committee gives can aid in promoting
specific research aims; however, I'd caution this committee from wholesale denigration of a field as that
serves no purpose, Forensic sciences should be subjected to rigorous cross examination in court and
peer review for research,

Sincerely,
Sandra Koch
Fellow — American Board of Criminalistics (Hairs and Fibers)

Cited and suggested references for further reading by the committee:
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From: e VST ¥

To:

Cc:

Subject: Follow-up information for "Forensic Science in the Criminal Courts: Ensuring Scientific Validity OF Feature-
Comparison Methods”

Date: Tuesday, December 13, 2016 3:14:26 PM

Members of PCAST,

On behalf of the authors of one of the forensic DNA probabilistic modeling mixture analysis papers
cited in your document (Greenspoon SA, Schiermeier-Wood L and Jenkins B. Establishing the Limits

of TrueAllele® Casework: A Validation Study. J Forensic Sci. 2015;60(5):1263-1276), we would like to
clarify some points addressed by your committee.
1. The paper published by our group at the Virginia Department of Forensic Science
(VDFS) was a report of studies performed by us and not directed by or affiliated with the
manufacturer of the technology (Cybergenetics). It was an independent assessment of
the probabilistic modeling program designed for the purposes of not only validating the
system for use on forensic casework, but also to demarcate the limitations.
2. We tested and successfully deconvoluted (separated out the contributor genotypes

using TrueAllele® Casework) mixture profiles consisting of two, three and four people.

TrueAllele” Casework (TA) successfully and reproducibly detected the most minor
contributor to three person mixtures where the minor contributor was as low as 8%. For
the four person mixtures, TA successfully and reproducibly detected the most minor
contributor to four person mixtures where the minor contributor was as low as 15%.

3. Perhaps more importantly however, is the fact that when compared to 100 synthetic

non-contributor PowerPlex” 16 STR profiles, all of the deconvoluted mixtures described
above produced negative log(LR) values except for one sample which was not
reproducible.

Thank you for the opportunity to clarify information from the above mentioned article.

Regards,

Linda C. Jackson | Director

Virginia Department of Forensic Science
700 N. 5 Street

Richmond, VA 23219

Note: Correspondence referencing a specific case may be retained and subject to disclosure as
part of the case file.

The information in this email and any attachments may be confidential and privileged. Access to this email by anyone other than the
intended addressee is unauthorized. If you are not the intended recipient (or the employee or agent responsible for delivering this
information to the intended recipient) please notify the sender by reply email and immediately delete this email and any copies from your
computer and/or storage system. The sender does not authorize the use, distribution, disclosure or reproduction of this email (or any part
of its contents) by anyone other than the intended recipient(s). No representation is made that this email and any attachments are free of
viruses. Virus scanning is recommended and is the responsibility of the recipient.



An Appeal for Reconsideration of 1 — 3 studies by the authors of the PCAST Report

Key:

TP = true positive conclusion

FP = false positive conclusion

TN = true negative conclusion

FPR = false positive rate

P = total number of positive or same-source comparisons

N = total number of negative or different-source comparisons

The authors of this report insisted that “set-based” black-box test designs as usually used for firearm-toolmark validity
testing were “not appropriate for assessing scientific validity and estimating the reliahility because they employed
artificial designs that differ in important ways from the problems faced in casework.” (p. 106.} | concede that generally
speaking the authors are correct insofar as these designs can indeed involve dependencies among the comparisons of
specimens. No study is perfect in every minute detail; all studies simply vary in their degree of imperfection. 8ut some of
these studies in fact do not differ in important ways from actual casework.

In 2003, Doug Murphy and | succeeded in having published in the AFTE Journal a cartridge case, black-box study that
used a “within set” design {see copy of article appended). With this design we sought to replicate actual casework and to
prevent the study from becoming too large and cumbersome. Still, this necessarily means there were possible
dependent conclusions reached by the test examiners, thus making confidence interval computations more difficult.
Thatis, if A = B and B = C, then A = C by logical association, and thus an actual microscopic comparison between A and €
may have been omitted though the result still recorded. If so, the A:C result is thus considered dependent. In all other
respects the study was carefully and appropriately designed. However, and of critical importance, there were no FP or
false-negative errors; additionally, the Sensitivity was calculated as 100% (TPs/P’s) and the Specificity as 40.7%
{TNs/N's).

The PCAST report made no mention of this study, presumably for the reason, principally, of its within-set design. But to
dismiss or ignore the study for this reason was too hasty in our view, as demonstrated befow. Reasonable and
conservative estimates can be made for the total number of independent and dependent conclusions, and confidence-
intervals then computed via an online calculator, as suggested in the PCAST report. Moreover, this 2003 study satisfies
most of the committee’s other criteria for “foundational validity,” as the latter were listed in the report:

- The study involved only sight test examiners, but it was large enough such that the results were not meaningless; and
though the total comparison count—or sample size—is not equivalent to the test-exariner population, a calculated
confidence interval does account for sample size. Then too, studies of similar design, similar content, and with the same
zero-error results, in principle, should be capable of having data aggregated for a much larger examiner population and
sample size. More on this shortly,

- The study was double biind. Not totally biind, which is very difficult to obtain; but just as in clinical drug testing, and as
with the cited Ames cartridge-case study, neither the proctors nor the test subjects knew any specific answers or were
capable of learning the answers without examining and de-coding a Master List held under lock and key.




- The study design was set in advance and not modified at any time.

- The study was overseen by myself and Doug Murphy. Both we and the test examiners were employed In the Firearms-
Toolmarks Unit of the FBI laboratory, so it cannot be said that the test was completely independent. However, {1) the
FBI Latents study cited by PCAST, and judged favorably by them, also was not completely independent and yet was
deemed by them as an entirely suitable foundational study, and (2) nevertheless, as one can observe from reading our
article, every possible precaution was taken in the study’s design to prevent bias or leakage of possible answers. Even
the Forensic Science Research Unit was consulted on the design.

- The answer sheets and distribution Master List are technicaily still available for examination by other serious, and
interested, partias.

Without immediate access to the answer sheets, and thus in order to estimate the actual minimum number of
Independent comparisons in this study, | very recently undertook a simple, empirical sampling simulation involving three
hypothetical test examiners performing the 2003 test, First, consider the comparisons of positive, or same-source
specimens. One “examiner” took what can be considered as a typical test; a second took a test heavily skewed toward
dependent comparisons; and a third took a test heavily skewed toward independent comparisons (see appended tables
that are very similar to the actual answer sheets provided to the test examiners). The combined proportion of
independent comparisons for the three was ~53% (17/32), That Is, for all the positive comparisons possible, at a
minimum 53% must have been original, “uncontaminated” comparisons. Relevant to these appended tables, note aiso
that for our study the eight examiners were each expased to an average of * nine positive comparisons out of 45
possible comparisons (70 P's total/eight examiners = 8.75 per examiner).

This result goes to Sensitivity. Instead of the calculation TPs/P = 70/70 = 100%, we now have 35/35 = 100%, where we’re
estimating that half, or 35, of the positive comparisons were independent.

But the real issue is FPR {FPs/N) and the denominator of this ratio, such that we can compute a confldence interval. We
know the numerator is zero from this study (no FPs), but how many independent, negative (different-source)
comparisons were there? | won’t belabor the point with more paper, but when a second analysis Is undertaken with the
same appended tables for the simulations, it turns out there were 103 total negative comparisons, of which 14 were
dependent {assuming no inconclusives), for a percentage of ~14%. But let’s be conservative and estimate the proportion
of independent negative comparisons as not 86% but 70%. For our study, there were 290 different-source comparisons.
Seventy percent of this figure would yield 203 independent negative comparisons where there was an opportunity for
false-positive conclusions. With zero false-pasitive errors, what then would be the Clopper-Pearson 95% confidence
interval figures? Using the online calculator suggested by the PCAST authors, the result Is a 95% confidence interval of
from 0.0% to 1.8% (see appended copy of the online results). This result is clearly in the same neighborhood with the
95% confidence interval from the Ames study, 0.6% to 1.5%~-when using the standard definition of false-positive rate
{FPR). But the main point here attaches not to the results themselves, but rather to the fact that such a calculation is
possible and valid—that accurocy from the test is indeed capable of being conservatively estimated.

The foregoing analysis invoked the conventional definition for FPR, derived from the four-cell, binary classification
system (yes or no). The PCAST authors prefer to use an ad hoc definition of FPR, wherein the number of FPs is divided
not by the total number of negatives {N) but rather by the number of actual negative conclusions—TNs + FNs=—in what's
a six-cell, trinary classification system (yes, no, maybe). I'm of the opinion that this ad hoc definition is debatable at best,



but nevertheless, using this method, the Clopper-Pearson 95% confidence interval for our study spans the range from
0.0% to 4.3%, whereas the Ames study reports in at 1.0% to 2.3%.

One assertion/criticism the PCAST authors doubtiess would make regarding our 2003 study is that a within-set design is
not a black-box design (see their Note 335}, and only black-box designs go toward validity. On p. 48 they define a black-
box study as “an empirical study that assesses a subjective method by having examiners analyze samples and render
opinions about the origin or similarity of samples.” But to the contrary, that's exactly what our and many other studies
did. True, the within-set design may involve comparison dependencies, but it's exactly the format examiners are often
presented with in actual casework {Here are six cartridge cases. What can you tell us?)

In this same footnote, the PCAST authors go on to criticize for the purpose of validity testing the inclusion of
between-class comparisons that existed in a separate study. Our study also involved a distinct minority of between-class
comparisons (~ 35 such comparisons, out of the total of 290 N's, or 25 out of 203 if dependencies are removed). If the
25 were subtracted from the 203, the resulting 95% C-P confidence interval would merely be shifted to 0.0% to 2.1%~
hardly much of a change. But whether such slicing and dicing is utterly necessary seems open to some debate. [t's true
that normally only TP conclusions from same-class guns and specimens would ever find their way into court, However,
the PCAST authors insist in Note 335 that “the central question ... is whether examiners can associate spent ammunition
with a particulor gun, not simply with a particular make of gun.” But examiners are commonly asked to determine if
there’s a link between a buliet or cartridge case fired in a gun with class characteristics different from those of a
submitted gun, and the submitted gun. The question to be answered is the same: Was this cartridge case fired in this
particular gun? And because class characteristics imparted to cartridge cases from different makes/models of guns are
often similar, comparison microscopy is very often conducted in these cases. So for all these circumstances combined, a
determination must still be made in answering the same central question, regardless of whether comparison microscopy
is conducted. Why should this reality be ignored when tabulating data and calculating accuracy? Our study—and
others—most closely mimics real world experience, in which all these categories of laboratory comparisons occur. To
draw inferences from studies involving only same-class guns is unrepresentative of actual casework and would skew an
aggregate error rate.

Even so, | can’t completely dispute their logic. If it's possible to more finely tune the research to better reflect
our specific environment, in which for the most part only positive results from same-class specimens are heard in court,
then some research surely should be designed and conducted on this basis. After all, the most crisp and relevant
courtroom question here is, Out of all the different-source, same-class, comparisons conducted by laboratories such as
yours, what percentage results in a FP error? That an |D conclusion was effected between same-class specimens is a
known piece of information {an 1D must invoive same-class), and therefore should be used.

But I can also cogently argue that a different design isn't invalidated simply because the design cannot be used
to perfectly answer someone’s particular question, or the most relevant question. To use an imperfect analogy, the
Framingham cardiovascular-disease-risk calculator commonly used by cardiologists accounts for only a few variables
such as blood pressure and age when yielding a probability that one will have a heart attack or stroke within ten years, If
mare was known for a particular patient—for example, that his close relatives all suffer from diabetes, then this
information clearly could be used to adjust upward the Framingham output. In theory one could do only research that
included diabetes as a variable, and perhaps this would be to the good. But this wouldn't “foundationaily” invalidate the
existing Framingham database and research, which doesn’t fully and compietely answer any particular patient’s exact
question that takes in his/her individual health information.

For us, the global (Framingham-type) question is, What is the FPR flowing out of forensic firearms exams across
the world, or at least across the United States?, and the global set of comparisons would include different-class
comparisons. Our study and others help to answer this broader question, even if not fully and precisely tailored to the




courtroom environment, In any event, I'm probably making a mountain out of a molehill; as already observed,
accounting for PCAST's objection hardly changes the confidence interval of our results.

In sum, my co-author and | would argue that our 2003 Glock cartridge-case study should be seriously reconsidered by
the PCAST authors as one that directly and logically supports foundational validity, when a fair appraisal is undertaken
with reasonable and conservative estimates for the number of independent conclusions. No, it’s not quite as sound in
design or as comprehénsive as the Ames study; it's not perfect; but it's pretty good and should not be completely
discounted and thereby banished to the “Island of Misfit Toys.”

Moreover, there were at least four other studies undertaken within the FB!'s Firearms-Toolmarks Unit that used our
study as a design template. Thus they alsc suffered from the same within-set dependency problem. Two of these were
bullet studies cited by PCAST (their footnotes 319 and 320), a third involved screwdrivers, and a fourth tested
examiners’ ability to correctly associate fractured surfaces. I’m not as familiar with the details of these studies and
therefore haven’t commented on them, but | do know there were zero FP errors with the two cited bullet studies. Given
this fact, and using the same 70% conservative estimate for the proportion of independent, same-source comparisons,
we can combine the number of different-source comparisons from all three studies and arrive at an adjusted, aggregate
total of 784. When one computes the Clopper-Pearson confidence interval using the standard FPR definition, the result
is 0.00% to 0.47%. These are impressive numbers, and the computation makes use of a significantly larger number of
total comparisons.

Steve Bunch
12/12/2016
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A Comprehensive Validity Study for the Forensic Examination of Cartridge Cases

By: Stephen G. Bunch and Douglas P. Murphy, FBI Laboratory, Washington DC
Key Words: breechface, cartridge cases, consccutive manufacture, Glock, indlviduality, valldity, validity study
ABSTRACT

Very littlé comprehensive research has been conducted to date on the scientific validity of traditional forensic
cartridge case comparisons, This study is an initial attempt to remedy this scarcity, and was conducted under the
assumption that the firearms-toolmarks examiner is an integral part of a scientific process leading to a reported
concluston, Thus, conclusions were drawn by a group of “control” examiners, in this case those in the Firearms-
Toolmarks Unit of the FBI Laboratory. The results herein confirm the sclentific validity of eraditional

comparisons.

INTRODUCTION

QOur purpose in this study was to rigorously test two
propositions: 1) that marks imparted to cariridge cases
fired from different guns rarely if ever display sufficient
agreement to lead a qualified firearms examiner to
conclude the specimens were fired from the same gun,
ond 2) that marks imparied te cariridge cases from the
same gun will rarely if ever lead a qualified firearms
examiner to conclude the specimens were fired from
different guns, These are the strongest claims commonly
made by examiners and are readily tested.

This study does not attempt to assess the relative strengths
and weaknesses of the various stages of the firearms
identification proeess, only the final resuit. As such, the
cause of any incomrect response cannot be identified.
However, correct responses lend validity to every step in
the examination process.

Note that inconclusive results are not addressed here.
They do not directly bear on the strong claims, ond can
vary widely depending on the specimens being examined,
While inconclusive results are relevant to tiraining,
competency, and quality assurance issues in general, they
are not teuly velevant to the scientific validity of bullet
and cartridge case comparisons, for the simple reason that
firearms examiners meke no firm, testable claims about
them,

PRINCIPLES OF THE TEST DESIGN

This study is designed along familiar proficiency test
lines, though there are critical differences that allow this
to be more properly termed a validity test, not a quality
assurance-type preficiency test;

-» First, test participation and retyrn was mandatory for
all qualified fircarms examiners in the FBI
Laboratory's Firearms-Toolmarks Unit, with the
exception of the test administrators. In this way no
self-selection bias and “survivorship” bins could be
introduced, the latter by an examiner deciding mid-

way through the test that he wouldn’t turn it in owing
to fear of a possible error,

=> The design eliminsted the possibility that test
examiners could somechow uncover the correct
answers. Conversations between examiners would
elicit absolutely no useful information, More on this
shortly.

= 1f any errors were committed, they could not possibly
be traced to an individual examiner. Examiners may
have 1 tendency when being tested to become more
conservative to reduce the possibility of committing
an crror. This test’s anonymity encouraged examiners
to treat the test as an actual case, and refrain from
“playing it safe.”

~» The test was blind insofar as the test takers (test
examiness or “control" examiners) were ignorant of
the correct answers. It was double blind insofar as the
test administvators (Bunch and Murphy) had no
knowledge of which examiner received which test
specimens (the anonymity feature again). Further, lo
learn of specific answers associated with specific test
packets would have required the administrators to
consult a Master List that was under lock and key. By
no means could the administrators have signaled
answers to the test takers, either overtly or with
subtlety.

Even so, this test was open and could not be considered
totally blind. The test examiners knew they were
participating in e validity swdy, Indeed, complete
conceplment is virtually impossible to rchieve. A
background “legend” must be created for each evidence
test packet, but a curious examiner who asks a few
questions will inveriably have his suspicions aroused that
a submission of evidence could constitute part of a test.

-» Carridge cases that had been marked by 10
consecutively manufactured Glock pistol breechfaces
were used in this study. In theory this made the test
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somewhat more severe than would hove been the
casc for actual forensic comparisons. On the other
hund, marks imparted to cartridge case primers from
Glock breechfaces are, under normal circumstances,
readily identifiable, It also should be noted that the
Glock pistol strikers were not consecutively
manufechired.

> Answer and instruction sheets provided to the test
examiners were to be as simple as possible in order to
minimize quality assurance errors, us opposed (o
scientific errors. Eoch examiner would simply write
the appropriate 2-letter set in the appropriate space on
the answer sheet: ID for identification, EL for
elimination, and NC for no conclusion
(inconclusive). A sample answer sheet is included at
the end of this article,

ACQUISITION OF GLOCK PISTOLS

Two firearms examinets from the FBI Laboratory,
inctuding ane of the test administrators, traveled to
Glock’s manufacturing facilities in Ferlach and Deutsch-
Wagram, Auslrin in October of 2000 to personally
observe the manufacturing process. This served two
purposes.  First, the consecutive manufacture of the
firenrm breechfices could be verified. Second, the types
of munufacturing processes could be observed and noted.
The most imporfant manufacturing steps we observed
were the following:

f) Ten unfinished slides were selected at random.

2) The final breechface dimensions were ereated using a
Computer Numerically Controlled (CNC) single-
edged cutter, This cutter makes approximately 60
passes until the correct dimension is achieved and is
sharpened in-house approximately every 1000 slides,

3} The extractor grooves were cut with a CNC rotating
broach, which appeared to leave some toolmarks on
the breechface.

4) The firing pin apertures were punched out from
behind the breechface with a tool bearing a ground
surface,

5) A slightly wedge-shaped tool the size of a firing pin
was used to smooth the sharp edges around the firing
pin apertures (CNC alsa).

6) A light hand-filing eperation was performed to
remove any remaining burrs and remove the slight
bulge around the firing pin apertures.

7) The breechface is protected or unaifected during all
of the remaining operations,

8) The firing pins are produced exclusively by grinding
operations with no final polish,

PROCEDURES AND TEST DESIGN DETAIL
After initial break-in and cleaning, cach of the ten 9mm
Luger Glack pistols was fired ten times and the cartridge
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cases collected in marked “gun bags,” one bag per gun.
The same occurred for o Berettn model 92F and a
SigSauer model P226, both 9mm Luger pistols obtained
from the Laboratory’s collection, so that the total
specimen count was 120, (These latier pistols were
included in order to allow for ¢limination conclusions.}
Two randomly selected specimens from each Glock gun
bag were then examined under a comparison microscope
to ensure that ot lenst some displayed wsefui, detailed
marks on the primers.

Now the cartridge cases in ench gun bag were scribed and
sticker-labeled with a 3digit number thzt was randomly
generated using mathematical software, Of course we
ensured that no duplicate, triplicate, etc., set of numbers
was used, Next we obfained examination packets,
numbered | — 8, each to be anonymously distributed to a
test examiner, and to contain the cartridge cases for
examination.

In order to preclude the usefulness of possible
conversations between examiners and cover the full range
of possible conclusions in this test, the combinations of
cartridge cases present in each examiner package was
controlled (o a certain extent. Eight test examiners
participated in the study, so into one of the exom packets
were placed ten cartridge cases from a single Glock pun
bag. Into another exam packet were placed one cartridge
case from cach of the nine remaining Glock gun bags,
plus one cartridge case from one of the non-Glock bags.
Into the remaining six exam packets werc placed either
zero, one, or two coriridge cases from the non-Glock
pistols. (All the while, what went where was recorded on
s Master List under the heading, for example, “Exam
Packet 5.")

Mext, the remaining contents of all the Glock gun bags
were blended into a single cartridge case bin. From this
bin were selected ot random the specimens that were
necessary o fill the remaining six exam packets to a total
of ten cartridge cases. Once the exam packets were
complete, eight answer sheets were prepared, one for each
test examiner, Each sheet listed the 3-digit specimen
identifying numbers, in prid fashion, indicating the
comparisons to be conducted. For every empty box on the
sheet, the test examiner would write the letters
representing one of the three possible conclusions.

This procedure ensured that no pattern existed between
the various exam packets. Conversations between test
extminers could not possibly result in a test examiner
obtaining any usefu information.

Once oll the materials were in good order, eight complete
test packets were prepared, each contnining three items:
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the exam pocket, the answer sheet specific o that exam
packet, and an instruction sheet that set forth the three
possible conclusions and their meaning, as well as an
admonition to take care to avoid mixing up cartridge case
identifying numbers when marking the answer sheet,

Before the distribution of the test packets, the test
examiners were bricfed on the test’s anonymily features,
instructed to treat the exam specimens as evidence in a
normal case, and given an explanation of the answer
sheet. Finnlly, the test packets were set aside in an
‘“outgoing” box in a closed room, and the test examiners
instructed to return them to the “incoming” box when
finished. They alse were 1o ensure that neither of the
authors saw them going in or ouwt of the closed room
{silly, but necessary for completely untainted results).

RESULTS AND DISCUSSION

The total number of comparisons conducted by the test
examiners was 360, with 42 of these between cartridge
cnses fired in consecutively maaufactured pistols. There
were no mis-identification or mis-elimination errors
committed in this study (faise positives and false
negatives, respectively).

For data analysis purposes, a forensic comparison
examination can be considercd analogous to a clinical test
such us a blood test. The overall quality of these tests is
often measured by considering four quantities: the fulse
positive and false negative error rates; a quantity termed
sensitivity, which is the number of positives actually
obtained from a test divided by the number of true
positives; and a quantity termed specificity, which is the
aumber of negatives actually obtained from a test divided
by the number of true negatives.

As observed, the false posilive and false negative error
rates realized from this study were zero. Additionally,
there were 70 true positives, which exactly matched the
number of identification conclusions offered-—thus the
sensitivity figure for this forensic examination, for this
study, was 100% (70/70 = 1). There were 290 true
negatives, while eliminztion conclusions offered totaled
118—thus the specificity figure for this forensic
examination, for this study, was 40,7% (118/296 = 407).

While false positives and negatives are the most
important measures of quality for forensic comparison
examinations, sensitivity and specificity are also
indicators of a test's quality and should be given due

consideration. Firearms and toolmarks comparison

examinations, however, do present a complication, given
the necessary and proper existence of inconclusive
results. Depending on the design of a particular validity
study, inconclusive results could be expected to range
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from a small fraction of total results to o large fraction.
(For examp!e, consider the likely results of this study if it
had been conducted with bullets fited from Glock pistols.)
Unlike many clinical tests, there is no inherent tendency
for sensitivity and specificity figures to cluster around a
“truc” figure. It depends on the circumstances, and this is
especially true for specificity.

Despite this, the overall results from ihis study were
excellent. Scientifically speaking, the validity of forensic
cartridge case comparison examinalions was strongly
supported. The two propositions directly tested by this
study were confirmed. The 100% sensitivity result was
noteworthy, and the 40.7% specificity result simply
refiects the nature of these examinations and may take on
lesser importance than carlier suggested when considered
in the caseworking context. That is to say, in actual
casework, as opposed to validity testing, the “operational”
specificity figure could well be higher, for quite often a
submitted cariridge case and gun display incompatible
class characteristics if in fact the cariridge case had not
been fired in the submitted firearm.

A final and important point to keep in mind is that studies
such os this assess the overall scientific validity and
quality of examinations (or tests) such as forensic
cartridge case comparisens, The results, however, should
not be used to arbitrarily estimate error rates in nctual
loboratory work, Laboratory practice often involves
additional quality assurance measures such as the
confirmation of identifications and technical peer review,
Moreover, the probability of an error in any particular
case depends on numerous factors, and is affected by the
so-called base rate, or the prior odds of a cartridge case
having been fired in a submiited firearm,
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Sample test-examiner #1: Typical test. Four same-gun groups. True Positives {TPs} comprise A=E=], B=C, D=G, F=i=H.

Assume sequence of comparison coniclusions runs along the columns, left to right. Thus test-examiner reached following conclusions. In table, dependent TP
conclusions are bolded, underscored, and in larger font:

A=E

A=), and therefore E=

C=B
G=D
H=F

[ = F, and therefore H = |

Six of the eight TP conclusions were independent.

XXX XAXX XXXX XXXX XXXX XXX XXXX KKK 000 XK

XXX XXXX XXXX XX XXXX XXXX KXXK XXKX XXXX

TR XXX XXXX XXXX XXX XXXX XXXX XXX XXX

XXXX XXXX XXXX XXXX XXXX XXXX XKXX

TP XXXX XXXX XXXX XXXX XXXX XXXX

XXKX XX XXX XXXX XXX

TP XXX XXXX XXX XXX

TP XNXX XN XXXX

TP TP XHXX XKXX

TP TP ANXX
A B C D E F G H l ]




Five of the fifteen TP conclusions were independent.

Sample test-examiner #2: Extreme dependency test. One same-gun group. TPs comprise D=FE=F=G=H=I.

KKK XXX KKXX XXX XXX XXXK XXXX XXX XXXX X000
AUXK XXX XXX XXAK XXX XXX XXXX KXXX XXXX
XKXK XXXX XEXK XUXK AKX 000K XXX KXXX
XXX X% YK XXX AXAX XX30t XXX
TP XXXX o eed %%X XXXX AXXX XXXX
TP TP XXX XXX XKXX HXXX KXHX
TP TP TP XXXX XKXX XXXX KHNX
P TP TP TP be bt XRXX AKX
TP TP TP TP TP XXX KA
XKXX
A B c D E F G H | J




Six of the nine TP conclusions were independent.

Sample test-examiner #3: Extreme independency test. Four same-gun groups. TPs comprise A=E=F=l, B={, C=H, D=G.

XHNX XXX XXX XAXX XXHX XXXX HXKX XXRX XNXX XXXX

XXXX XHNH XXXX XXNX XXXK XXX XXX XXX XXXX

UXXX XXX XXKX XXX KKK AI0EK XXX XXXX

ANNK HXKX KNHX XHXX XXXX XXX XXXX

TP XXKX XXXX XXX XXX 30000 XXX

TP P XXX YOIXX XXX XXXX XXX

TP XXXX XUXX XXX HEXX

TP NXHX XXX XXX

TP 000 XHXX

TP ir 11 XX
A B C D E F G H | J




1211272016 Epl Touls - Calculate conflidenca limils for 8 sample proportion

eausvet Epitools epidemiological calculators
Home Prevalence Freedom Studies {English v |
Diagnostics Sampling

Calculate confidence limits for a sample
proportion

This utility calculates confidence limits
for a population proportion for a
specified level of confidence,

In pUt Values Inputs are the sample size and

number of positive results, the desired
level of confidence in the estimate and
the number of decimal places required
in the answer,

The program outputs the estimated
Sample 5, proportion plus upper and lower limits
size ! of the specified confidence interval,
using 5 alternative calculation
methods decribed and discussed in
Brown, LD, Cat, TT and DasGupta, A
{2001). Interval Estimation for a
proportion. Statistical Science 16:101-

Number
positive : 133:

1. Asymptotic {Wald) method
based en a normal
approximation,

2. Binomial (Clopper-Pearson)

Confidence .. ... ‘exact’ method based on the
level: 1085 ¥ beta distribution,

3. 'Wilson' Score interval,

4. 'Agresti-Coull' (adjusted Wald)
interval and

5. effreys' interval.

The Wald Iinterval often has
Confidence inadequate coverage, particularly for
Interval | Clopper-Pearson exact v smail n and values of p close to 0 or
method: =1 Conversely, the Clopper-Pearson

Exact method is very conservative and
tends to produce wider intervals than
necessary. Brown et al. recommends
the Wilson or Jeffreys methods for

hllp:liepiloois.amvetcmn.aWcanlent.php?pagFCtProporﬂm&SampteSize:mS&Posillve=0&Cm!=0.95&melhod=2&Digils=3
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Ept Tools - Calculate confidanca fimits for 2 sample proportion

small n and Agresti-Coull, Wilson, or
Jeffreys, for larger n as providing
more reliable coverage than the

Decimal
places in 3 alternatives. Also note that the point
answer ° estimate for the Agresti-Coutl method

is slightly larger than for other
methods because of the way this
interval is calculated.

Confidence limits for a proportion
Analysed: Mon Dec 12, 2016 @ 22:24

Inputs
Sample size 203
Number positive 0
Confidence level 0.895
CI methed Clopper-Pearson exact
Results
Number Sample R Lower Upper
positive size  roportion/Prevalence o, o gg0p oL
Clopper-Pearson 0 203 0.000 0.000 018
exact
CI plot

htig.Hepitools ausvet.com.awconlent.php?page=CIProportion&SampleSize=203&Posilive=0&Conf=0.958method=2&Digits=3
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usvet

Home
Diagnostics

Epi Tools - Calcutata confidence limits for a semple proportion

EpiTools epidemiological calculators

Prevalence Freedom

Sampling

Studies

Calculate confidence limits for a sample

proportion

Input Values

Sampie
size :

a3

Ly =

o.1(18)

Number
positive ;

Confidence T ;
level: yoa T

Confidence
interval
method:

Clopper-Pearson exact v |

This utility calcuiates confidence limits
for a population proportion for a
specified level of confidence.

Inputs are the sample size and
number of positive rasults, the desired
level of confidence in the estimate and
the number of decimal places required
in the answer.

The program outputs the estimated
proportion plus upper and tower limits
of the specified confidence interval,
using 5 alternative calculation
methods decribed and discussed in
Brown, LD, Cat, TT and DasGupta, A
(2001). Interval Estimation for a
proportion. Statistical Sclence 16:101-
133;

1. Asymptotic (Wald) method
based on a normai
approximation,

2. Binomial (Clopper-Pearson)
'exact’ method based on the
beta distribution,

3. 'Wilson' Score interval,

4, 'Agresti-Coull' {adjusted Waid)
interval and

5. Jeffreys' interval,

The Wald interval often has
inadequate coverage, particularly for
small n and values of p close to 0 or
1. Conversely, the Clopper-Pearson
Exact method is very conservative and
tends to produce wider intervals than
necessary. Brown et al, recommends
the Wilson or Jeffreys methods for

hitp-fepitoots.ausvet.com -au/conlent,phpPpage=ClProportion&SampleSize=83&Positive=0&Conf=0.95&melhod=28Digits=3

|English v |
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12122016 Ept Tools - Calculate confidence limils for a sampie propartion

small n and Agresti-Coull, Wilson, or
Jeffreys, for larger n as providing
more reliable coverage than the

Becimal ) ;

places in 3 alternatives, Also note that the point

answer : estimate for the Agresti-Coull method
is slightly larger than for other
methods because of the way this
interval is calculated.

| Submit |

Confidence limits for a proportion
Analysed: Mon Dec 12, 2016 @ 22:32

Inputs

Sample size 83

Number positive 0
Confidence level 0.95

CI method Clopper-Pearson exact
Results

Number Sample . Lower Upper
pusitive size Proportion/Prevalence 95% CL 95% CL

Clopper-Pearson 0 a3 0.000 0.000 0.043
exact

CI plot

hitp:Hepitocls.ausvet.com.awcontent php?page=C Praportion&SamplaSize=838Positive=08Conf= D.95&method=2&Digils=3



From: E====aa|

To:

Subject: Forensic Cartridge Case Study for PCAST

Date: Tuesday, December 13, 2016 4:17:51 PM
Attachments: Response to PCAST solicitation for validi ies.pdf
Dr. Lander:

Originally the Virginia Dept. of Forensic Science (DFS) was thinking of putting together a response to
PCAST's “solicitation,” and as part of that we in the Dept. were given the opportunity to
reply/comment, at which point the Dept. would collate the replies and forward them to you.
However, | perhaps misunderstood the Dept’s intent. The bottom line is, the DFS is not going to be
responding as an organization, as | just learned today. Instead, the Dept. encouraged me to send the
document directly to you and the PCAST panel.

So in this vein, the attached scanned document is what | had sent yesterday to the managers here in
the Dept... So they, perhaps more than the PCAST panel, were the audience. Please inform any
reviewers of same, because | have no time to do any revisions before the deadline for “submissions.”
Also, as required, | don’t believe the PCAST panel reviewed this study:; at least there are no such
citations in your final report.

The document attached was prepared by me without a lot of time, so in the document itself | didn’t
drill down into the details about estimating the number of different-source, independent and
dependent conclusions, etc. But | have kept my notes just in case.

I’'m hoping that the committee calls on the ghost of Enrico Fermi, haha, when thinking of this. Of
course, as you know, he was the originator of “Fermi Estimation,” and therefore | hope the fact that
I'm invoking what | think are good estimations isn’t immediately a show stopper (even though I'm
not exactly doing Fermi estimations). Especially since my estimations are conservative, They're
especially conservative also in a way | didn’t mention in the document—that as a matter of the
actual test taking, I'm very confident the test examiners did not use, or rarely used, logic to group
specimens and thus effect dependent conclusions. Still, it's not possible to estimate this, and so |
didn’t include it as a factor.

Finally, | must issue a disclaimer. Clearly this document represents my views and perhaps those of
my co-author, and not necessarily the views of the VA Dept. of Forensic Science.

Thank you for your time and consideration,

Stephen G. Bunch, Ph.D.

Firearms & Toolmarks Section Supervisor

Virginia Department of Forensic Science - Northern Lab
10850 Pyramid Place

Manassas, VA 20110



Stephen.Bunch@dfs.virginia.gov

Note: Correspondence referencing a specific case may be retained and subject to disclosure as
part of the case file.

The information in this email and any attachments may be confidential and privileged. Access to this email by anyone other than the
intended addressee is unauthorized. If you are not the intended recipient (or the employee or agent responsible for delivering this
information to the intended recipient) please notify the sender by reply email and immediately delete this email and any copies from yaur
computer and/or storage system. The sender does not authorize the use, distribution, disclosure or reproduction of this email (or any part
of its contents) by anyone other than the intended recipient(s). No representation is made that this email and any attachments are free of
viruses. Virus scanning is recommended and is the responsibility of the recipient.



THE AMERICAN CONGRESS OF L=
FORENSIC SCIENCE LABORATORIES

The United States Assembly of Forensic Science Laboratory Professionals

Our Mission
To represent and unite all current and December 14, 2016

former professionals of United States
forensic sclence laboratories with the
purpose of creating and preserving the

conditions necessary for the American Dr. Etic Lander

criminal and civil justice systems to have .
confidence in the integrity of forensic c/o US Department of Justice
laboratory services. The Office of Legal Policy

The American Congress of 950 Pennsylvania Avenue NW

Forensic Science Laboratories

¢/o The Forensic Foundations Group
901 S. Bridge Street, Number 227
Dewitt, M| 48823

(517) 803-4063 Dear Dr. Lander:

office@forensicfoundations.com

Washington, DC 20530

President The American Congress of Forensic Science Laboratories
:f,:g:: aihgr'; rrlglLaboratory is in receipt of an invitation (which was not dated but was
Little Rock, Arkansas received by email on December 2, 2016) in which our
Secretary of Operations organization was asked to provide you with foundational
ggs;mfag:t R research in support of the several forensic laboratory
Sacramento, California sciences criticized by the recent report issued by the
Bisciitive Beard President's Council of Advisors on Science and
Jana Champion Technology (PCAST).

Wisconsin DOJ Crime Laboratory Bureau
Madison, Wisconsin

J&Rifer Cones We appreciate the opportunity to assist you, but we are

IRS National Forensic Laboratory tespectfully declining your invitation. While we respect
hi inoi ’ ; .

Chicago, Illinois the Office of the President of the United States and the
Richard Ernest experts it convenes to examine a wide variety of issues
Alliance Farensics Laboratory, Inc. . X .

Dallas, Texas relevant to our fellow citizens, we believe that PCAST is
Garth Glassburg not an entity having sufficient authority or relevance such
Northern IL Regional Crime Laboratory that it can summon an entire scientific community to

Vernon Hills, lllinois i e ; . .
justify its own existence in less than two weeks using an

Bruce Houlihan unnecessarily strict definition of foundational validity,
Orange County Crime Laboratory

Santa Ana, California
Steven 0’Dell In this regard, we encourage PCAST to reassess its
Baltimore Police Department criteria for what constitutes foundational validity.

Baitimere, M irgini . . ope s e o
ST A e T Science is a highly accommodating institution, yet PCAST

Bruce Reeve subscribes to a remarkably constrictive and myopic
lowa DCI Criminalistics Laboratory . n : : . .
Ankeny, lowa definition of science as if to strategically discredit as

Exgcutive Dirsctor many forensic science disciplines as possible.

lohn M. Collins Jr.
The Forensic Foundations Group
Dewitt, Michigan

The American Congress of Forensic Science Laboratories Page 1 of 2




Moving forward, it is our opinion that PCAST's intent to function in good faith will be indicated by its
willingness to keep an open mind and engage a wide variety of professionals working in forensic science
organizations not only in the United States but around the world. This means visiting crime laboratories
where forensic science is practiced, allowing yourself to be introduced to and educated by the people
who perform this work, and listening carefully to the many - sometimes differing - perspectives held by
those who've worked and managed in the forensic sciences for many years. It is our understanding that
PCAST has already been provided significant volumes of information from a vatiety of forensic science
organizations and experts. We hope you give it the serious consideration it deserves.

If we can assist you in improving your approach to learning about the forensic sciences, we would
sincerely like to do so. Please do not hesitate to contact us.

Respectfully Submitted,

Kermit Channell
President

- The American Congress of Forensic Science Laboratories Page2of2



ASCLD BOARD OF
DIRECTORS

Jeremy Triplett, President
Kentucky State Police

Ray Wickenheiser, President
Elect

New York State Police Crime
Laboratory System

Jody Wolf, Past President
Phoenix Police Department

Cecilia Doyle, Secretary
lllinois State Police

Andrea Swiech, Treasurer
Oklahoma State Bureau of
Investigation

Brooke Arnone
Arizona Department of Public
Safety

Adam Becnel
Louisiana State Police
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Minnesota Bureau of
Criminal Apprehension
Forensic Science Service

Matthew Gamette
Idaho State Police
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United States Secret Service
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Jefferson Parrish Sheriff's
Office

Christian Westring

NMS Labs

ASCLD STAFF

Jean Stover
Executive Director

Ramona Robertson
Administrative Assistant

AMERICAN SOCIETY OF
CRIME LABORATORY DIRECTORS, INC.

139 A Technology Drive Garner, NC 27529

December 13, 2016

Dr. Lander and distinguished members of PCAST,

The ASCLD Board of Directors appreciates your letter dated 12/1/2016
asking for additional input into PCAST’s recent report, Forensic Science in
Criminal Courts: Ensuring Scientific Validity of Feature-Comparison
Methods. As you are probably aware, ASCLD represents more than 600 of
the nation’s crime laboratory directors and managers, and we take seriously
any opportunity to provide the perspective of crime laboratory administrators
and practitioners and inform non-forensic stakeholders into the needs and
state of forensic science.

While we truly appreciate your request, we are unable to provide you the
requested information as of this date due to the extremely short deadline you
assigned. ASCLD notes that PCAST took more than a full year to develop
the report with more than 100 revisions. Two weeks is simply not enough
time to provide thorough, well-reasoned responses to your questions,
particularly during this time of year where laboratory directors are very busy
with year-end operational issues.

We hope that in the future PCAST will provide another opportunity for
ASCLD’s input into the Report with a more realistic response timeline.

Kindest regards,

-

Jeremy Triplett
ASCLD President

Phone: 919.773.2044 | Fax: 919.861.9930 | Website: www.ascld.org
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PRESIDENT
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Association of

Firearm and Tool Mark Examiners

December 13, 2016
Dear Dr. Lander,

In late November 2015 the President’s Council of Advisors on Science and Technology
(PCAST) posted a seven-question survey on the White House website for public input
on forensic science in the United States, with any comments due by December 23, 2015.
Specifically, PCAST was inquiring about research supporting the foundational validity of
a range of pattern-based forensic disciplines.

In response to this invitation, the Association of Firearm and Tool Mark Examiners
(AFTE) submitted a document highlighting more than forty papers authored by AFTE
members, academics, or physical science researchers and published in the Journal of
Forensic Sciences, the AFTE Journal, Forensic Science International, and other
publications in the last few years. Several of these studies were federally funded by the
US Department of Justice (DOJ), the National Institute of Justice (NIJ), or the US
Department of Energy (DOE). The list provided by AFTE only scratched the surface of
the research that has been performed to assess the validity and reliability of firearm
and toolmark identification over numerous decades, and the document directed PCAST
to find additional information neatly packaged in the Association’s online Admissibility
Resource Kit: https://afte.org/resources/swggun-ark.

The PCAST Report to the President on “Forensic Science in the Criminal Courts: Ensuring
Scientific Validity of Feature-Comparison Methods” released in September 2016
declared that nearly every forensic science method discussed failed to meet their
scientific criteria. AFTE released a statement in October 2016 addressing its concerns
with the report. Most recently, a form letter from PCAST Co-Chair Eric Lander (which
was undated but distributed via email on December 2) is once again requesting
information about the foundational literature of firearms analysis, to be submitted to
PCAST no later than December 14, 2016. It is clear to the AFTE Board of Directors that
if the previous materials presented in good faith to PCAST have been disregarded, no
additional evidence will alter their collective opinion.

AFTE Board of Directors



From: ]

To:

Subject: Re: Invitation-to Provide Foliow-up Information to PCAST Regarding its Forensics Report
Date: Thursday, December 8, 2016 7:26:34 PM

Dr. Lander,

| received your email inviting additional input on the PCAST repart on Forensic Science Friday
afternoon, and | noted the requested quick turnaround of eight working days to get any additional
information to you.

| encourage you to approach this project cooperatively with experts in the relevant forensic
disciplines. Practicing forensic scientists in the OSAC subcommittees (Biclogical Data Interpretation
and Reporting, Footwear and Tire, and Firearm and Tool Mark) should be wiiling to work with you
and your committee in providing relevant data and references in support of foundational validity of
their disciplines. | would not expect them to be able to produce an exhaustive list of references in
eight days.

I' would hope that you would not put unreasonabie restrictions on the form of the data that you are
willing to accept and consider. There is a wealth of data on DNA mixture interpretation, but if you
are only willing to consider published data in scientific journals that deals with three person mixtures
with the minor contributor below 20%, then you are probably not going to get much of a response.

Thousands of papers and publications refating to firearms comparison exist. It would be a matter of
someone taking the time to go through and determine which ones speak to foundational validity.
Again, if the effort is cooperative it has a chance of providing you with information you could find
useful.

This is a project that should be undertaken by PCAST with assistance and input by experts in the
forensic field, with an open mind and without unreasonably tight deadlines.

Mike Grubb
Crime Laboratory Director
San Diego Co. Sheriff's Dept. Crime Laboratory

Confidentiality Notification: All messages, inciuding attachments, sent from this address are for business purposes
only and should be considered 1o be confidential and privileged information intended for the sole use of the
designated recipient{s). Any unauthorized forwarding or distribution of this information, without consent is
prohibited. If you have received this message by mistake and are not the intended recipient, pieaée notify the
sender by reply mail and please destroy this message and all copies of this message.




Firearms and Toolmark references not cited in the PCAST report

Source: https://afte.org/resources/swggun-ark

Emerging research

Zhang, S. and Chumbley, L.S., "Manipulative Virtual Tools for Tool Mark Characterization", NCJRS
Document #241443, Award # 2009-DN-R-119, March 2013

Song, J., et al, "Development of Ballistics Identification- from Image Comparison to Topography
Measurement in Surface Metrology", Measurement Science and Technology, Volume 23, Number
054010, March, 2012.

Chu, W., et al, "Selecting Valid Correlation Areas for Automated Bullet Identification System Based
on Striation Detection”, Journal of Research of the National Institute of Standards and Technology,
Volume 116, Number 3, May-June 2011.

Error Rates

Murphy, D., "CTS Error Rates, 1992-2005 Firearms/Toolmarks", Presented at the 41st Association
of Firearm and Tool Mark Examiners (AFTE) Training Seminar, Henderson, NV, May 5, 2010.

CTS Results Revisited: A Review and Recalculation of the Peterson and Markham Findings, by:
Bunch, Stephen.

Murdock and Grzybowski - Firearm/Toolmark Identification- Meeting the Daubert Challenge, AFTE
Journal Winter 1998; 30(1):3-14.

Firearm and Toolmark Identification, Biasotti and Murdock, Chapter 23, MODERN SCIENTIFIC
EVIDENCE: THE LAW AND SCIENCE OF EXPERT TESTIMONY, By: David L. Faigman, David H.
Kaye, Michael J. Saks & Joseph Sanders.

Peterson J.L., Markham P.N., Crime laboratory proficiency testing results, 1978-1991 . I;
Identification and classification of physical evidence. Journal of Forensic Science. 1995
Nov;40(6):994-1008

Peterson J.L., Markham P.N., Crime laboratory proficiency testing results._ 1978-1991. 1l: Resolving

questions of common origin. Journal of Forensic Science. 1995 Nov;40(6):1009-1029.

Firearm and Toolmark Identification — Theoretical

Heard, B. J., "Handbook of Firearms and Ballistics", Wiley & Sons, 1997, pp. 136-141

Howitt D., Tulleners F., "A Calculation of the Theoretical Significance of Matched Bullets", Journal of
Forensic Sciences, Volume 53, Number 4, July 2008, Pp.868-875.



May L., "ldentification of Knives, Tools and Instruments”, Journal of Police Science (nc volume or
number listed) 1930, pp. 247-248.

Neel M., and Wells M., "A Comprehensive Statistical Analysis of Striated Tool Mark Examinations
Part I: Comparing Known Matches and Known Non-Matches", AFTE Journal, Volume 39, (4),
Summer 2007, pp. 176-198.

Stone, Rocky, "How Unique are Impressed Marks", AFTE Journal, vol. 35 (4), Fall 2003, pp. 376-
383.

Firearm ldentification — Bullets

Bachrach, B., "Development of a 3D-Based Automated Firearms Evidence Comparison System”,
Journai of Forensic Sciences, Vol. 47(6), November 2002, pp. 1253-1264.

Biasotti, A. A., "A Statistical Study of the Individual Characteristics of Fired Bullets", Journal of
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Reference: PCAST's Criteria for the Foundational Validity of Feature Comparison
Methods - Six Problems

Dear Co-Chair Holdren and Co-Chair Lander:

On behalf of the National District Attorneys Association (NDAA), the nation’s oldest and largest
prosecutor organization, representing 2,500 elected and appointed District Attorneys across
the United States, as well as 40,000 assistant district attorneys, | write to you again regarding a
report recently released on forensic science disciplines. NDAA received a solicitation for any
additional relevant scientific studies the September 2016 Report to the President-Forensic
Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods (“the
Report”) might have missed.

In its solicitation for any relevant scientific studies that may have been missed in its Report,
PCAST proposes to send forensic scientists and other interested parties on a "fool’s errand" to
provide it with "appropriately designed, research studies" that contain empirical evidence
establishing the foundational validity and an estimation of the accuracy of certain feature
comparison methods. PCAST's request is essentially designed to lure critics of its Report into
providing studies that will inform certain premises contained within the Report (essential
foundational validation criteria) that we, and others, dispute. Once collected, these
supplemental studies are sure to be rejected as failing to offer sufficient support for the
foundational validity of questioned methods because, according to PCAST's own criteria,
these studies will not have been "appropriately designed."

Specifically, PCAST asks that we, and others, "identify any relevant scientific reports that (i)
have been published in the scientific literature, (ii} were not mentioned in the PCAST report;
and (iii) describe appropriately designed, research studies that provide empirical evidence
establishing the foundational validity and estimating the accuracy of any of the following
forensic feature-comparison methods, as they are currently practiced" for the five listed
disciplines. PCAST then asks that we, and others, "indicate how the scientific reports establish
foundational validity and estimate the accuracy of the relevant method" (PCAST solicitation
email). (Emphasis added).



PCAST's seif-constructed definition of an "appropriately designed" research study can be
found on pages 52-53, Box 4, of its Report. On this topic, PCAST asserts the following:

BOX 4. Key criteria for validation studies to establish foundational validity

Scientific validation studies—intended to assess the validity and reliability of
a metrological method for a particular forensic feature-comparison
application— must satisfy a number of criteria.

(1) The studies must involve a sufficiently large number of examiners and
must be based on sufficiently large collections of known and representative
samples from relevant populations to reflect the range of features or
combinations of features that will occur in the application. n particular, the
sample collections should be;

(a) representative of the quality of evidentiary samples seen in real cases.
(For example, if a method is to be used on distorted, partial, latent
fingerprints, one must determine the random match probability—that is, the
probability that the match ocecurred by chance—for distorted, partial, latent
fingerprints; the random match probability for full scanned fingerprints, or
even very high quality latent prints would not be relevant.)

(b) chosen from populations relevant to real cases. For example, for features
in biological samples, the false positive rate should be determined for the
overall US population and for major ethnic groups, as is done with DNA
analysis.

(c) large enough to provide appropriate estimates of the error rates.

(2) The empirical studies should be conducted so that neither the
examiner nor those with whom the examiner interacts have any
information about the correct answer.

(3) The study design and analysis framework should be specified in
advance. In validation studies, it is inappropriate to modify the protocol
afterwards based on the results

(4) The empirical studies should be conducted or overseen by individuals or
organizations that have no stake in the outcome of the studies.

(5) Data, software and results from validation studies should be available
to allow other scientists to review the conclusions.

(6). To ensure that conclusions are reproducible and robust, there should be
multiple studies by separate groups reaching similar conclusions.

(PCAST Report, pp. 52-53),

There are a number of problems with these criteria. The first is that they are hopelessly {and
may have been purposefully left} vague, allowing PCAST the flexibility to later proclaim that
the samples utilized in the studies they were/will be provided were not large enough,
representative enough, or relevant enough to satisfy their unquantified directives. As such,
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they provide forensic practitioners and interested parties with no a priori notice or guidance
on PCAST's expectations regarding the critical question of "how much is good enough?"

Examples include requirements concerning, "a sufficiently large number of examiners"
(criteria #1); "sufficiently large collections of representative samples" (criteria #1); and
sample collections "large enough to provide appropriate estimates of the error rates"
{criteria (1){c}). Exactly what is "sufficiently large," "representative," or "large enough" is
apparently for PCAST's post hoc determination, unrestrained by any limitations that would
either curtail its judgment or mediate a disagreement on these guestions.

The second problem with these criteria is their purported applicability as a mandatory
"gateway" through which forensic validation studies must pass to be deemed "appropriately
designed." The problem with this assertion is that the clinical sources PCAST uses to construct
its analogy between the medical field and forensic science explicitly state that the approaches
and designs set forth in those documents are not the only ones that are scientifically
legitimate. Furthermore, these documents explicitly state that their recommendations are not
mandatory or binding on either their authors or the public.

PCAST claims that "[s]cientific validation studies—intended to assess the validity and
reliability of a metrological method for a particular forensic feature-comparison application—
must satisfy a number of criteria" {PCAST Report, p. 52) {(Emphasis added). In footnote 118,
PCAST asserts, "The analogous situation in medicine is a clinical trial to test the safety and
efficacy of a drug for a particular application." {Emphasis added). In support pf this
proposition, PCAST cites a small handful of sources. Among these are: (1) "Design
Considerations for Pivotal Clinical Investigations for Medical Devices: Guidance for Industry,
Clinical Investigators, Institutional Review Boards and Food and Drug Administration Staff,"
issued November 7, 2013, by the FDA, Center for Devices and Radiological Health, and the
Center for Biologic Evaluation and Research; (2) "Adaptive Designs for Medical Device
Clinical Studies: Guidance for Industry and Food and Drug Administration Staff," issued July 27,
2016, by the FDA, Center for Devices and Radiological Health, and Center for Biologics
Evaluation and Research; and (3) "Guidance for Industry E9 Statistical Principles for Clinical
Trials," issued in September 1998, by the FDA, Center for Drug Evaluation and Research, and
Center for Biclogics Evaluation and Research.

A cursory review of these documents reveals that PCAST's claim that "the FDA reguires"
certain criteria contained therein is not exactly true. The caption of each page of the first two
cited documents is emblazoned with the following disclaimer, "Contains Non-Binding
Recommendations." Further, pages four and one, respectively, of the first two cited
documents contains a box that states, in full:

This guidance represents the Food and Drug Administration's (FDA's) current
thinking on this topic. it does not create or confer any rights for or on any
person and does not operate to bind FDA or the public. You can use an
alternative approach if the approach satisfies the requirements of the
applicable statutes and regulations. If you want to discuss an alternative
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approach, contact the FDA staff responsible for implementing this guidance.
If you cannot identify the appropriate FDA staff, call the appropriate number
listed on the title page of this guidance.

(Emphasis added).

Similarly, the first page of "Statistical Principles for Clinical Trials," contains nearly identical
language, to wit:

This guidance represents the Food and Drug Administration's (FDA's) current
thinking on this topic. It does not create or confer any rights for or on any
person and does not operate to bind FDA or the public. An alternative
approach may be used if such approach satisfies the requirements of the
applicable statutes and regulations.

In addition, the Adaptive Design guidance document states, "The use of the word should in
Agency guidance means that something is suggested or recommended, but not required"
(Page 2). Furthermore, the Recommendations for Design Considerations for Medical Devices
document states:

Although the Agency has articulated policies related to design of studies
intended to support specific device types, and a general policy of tailoring the
evidentiary burden to the regulatory requirement, the Agency has not
attempted to describe the different clinical study designs that may be
appropriate to support a device pre-market submission, or to define how a
sponsor should decide which pivotal clinical study design should be used to
support a submission for a particular device. This guidance document
describes different study design principles relevant to the development of
medical device clinical studies that can be used to fulfill pre-market
clinical data requirements. This guidance is not intended to provide a
comprehensive tutorial on the best clinical and statistical practices for
investigational medical device studies.

(Page 4) (Emphasis added).

Moreover, notwithstanding PCAST's assertion to the contrary, the FDA Report on the Adaptive
Design for Medical Device Clinical Studies provides that "under certain circumstances, a
number of scientifically valid changes to the study design can be entertained even if they are
not preplanned” (p. 26). (Emphasis added).

As an aside, PCAST claims that "[ijn the design of clinical trials, FDA requires that criteria
for analysis must be pre- specified and notes that post hoc changes to the analysis
compromise the validity of the study." (Emphasis added). This assertion is apparently based
on a statement contained in the FDA's guidelines concerning "Adaptive Designs for Medical
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Device Clinical Studies." However, PCAST takes the actual quote in the guidelines out of
context and rephrases it to suit its own purposes. The actual language states:

Any change or revision to a study design is post hoc and not adaptive if it is
based on unplanned findings from an interim (or final) analysis in a study
where the blind (mask) of outcomes by treatment groups has been broken
(even if only the coded treatment group outcomes). Such modifications
generally would endanger the scientific validity of the study since the false
positive rate is not controlied and there is a strong possibility of operational
bias.

{FDA Adaptive Design Guidelines, Page 9).

PCAST's alteration of the text is significant because it substitutes its chosen word, "analysis,"
for the actual words "study design" and then utilizes that alteration to attack the legitimacy of
the Miami-Dade latent fingerprint study findings, which showed a very low false positive rate
(PCAST Report, p. 95). Regarding those findings, PCAST states: {(Note: The paper observes that
in 35 of the erroneous identifications the participants appeared to have made a clerical error,
but the authors could not determine this with certainty.) “In validation studies, it is
inappropriate to exclude errors in a post hoc manner (see Box 4)." (Emphasis added).

if anything, Miami-Dade's post hoc conjectures on the possible reasons for the number of
incorrect results was an analysis of the results, not a post hoc "change or revision o a study
design," as discouraged by the FDA document, However, PCAST uses Miami-Dade's post hoc
determination that 35/42 false positive results were probably the result of clerical errors, in
conjunction with the misquoted text from the FDA's Adaptive Designs document, as reasons
to reject a much lower false positive rate in favor of a much higher one (false positive upper
bound of 1 error in 18 cases). Thus, in addition to incorrectly claiming that the FDA requires
that certain criteria must be satisfied in the design and performance of clinical trials, PCAST
also incorrectly paraphrased one of its chosen sources to suit its own purposes.

The third problem with these criteria is that they are based upon a faulty analogy between
forensic feature comparison methods and the clinical study of "medical devices” conducted on
laboratory animals, human subjects, and non-clinical in-vitro studies {Design Considerations
guidelines, p. 9). PCAST fails to even attempt to justify this analogy, apparently hoping that
the reader will simply accept the comparison as valid at face value and question no further.
The fact is that there are substantial differences between clinical trials designed to measure
the impact of a "medical device" on the health, safety, and well-being of an animal, a
human, or an unborn child, and the ability of forensic examiners to correctly recognize,
analyze, compare, and distinguish between questicned and known features. PCAST, however,
simply assumes that these different subjects, aims, and objectives should have no impact on
the appropriate design and experimental criteria to be utilized to conduct these very
different types of studies. Because PCAST has not even attempted to justify its strained
analogy between clinical trial designs and forensic feature comparison validation studies, it
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has failed to prove the applicability of its validation criteria. As such, the analogy must be
rejected as faulty.

The fourth problem with these criteria is that their rigid formulation and mandatory nature is
not only inconsistent with the non-mandatory nature of the FDA's guidance concerning clinical
trial designs and experiments, but is also inconsistent with the definition of "Valid Scientific
Evidence" contained in the FDA's own Design Considerations document. That definition
states:

Valid scientific evidence is evidence from well- controlled investigations,
partially controlled studies, studies and objective trials without matched
controls, well-documented case histories conducted by qualified experts, and
reports of significant human experience with a marketed device, from which
it can fairly and responsibly be concluded by qualified experts that there is
reasonable assurance of the safety and effectiveness of a device under its
conditions of use. The evidence required may vary according to the
characteristics of the device, its conditions of use, the existence and
adequacy of warnings and other restrictions, and the extent of experience
with its use. Isolated case reports, random experience, reports lacking
sufficient details to permit scientific evaluation, and unsubstantiated
opinions are not regarded as valid scientific evidence to show safety or
effectiveness. Such information may be considered, however, in identifying
a device the safety and effectiveness of which is questionable.

(Design Considerations guidelines, p. 9 (quoting 21 CFR 860.7(c)(1})).

It is clear that the rigid and mandatory set of criteria that PCAST would impose upon
forensic validation studies finds no support in this definition — the very benchmark against
which scientifically valid clinical trials are measured. Rather, as the definition notes, the
determination that scientific evidence is valid may be derived from a variety of study types
and designs. These include "well-controlled investigations;" "partially controlied studies;"
"studies and objective trials without matched controls;" "well-documented case histories
conducted by qualified experts;” and "reports of significant human experience.”

Each of these types of studies has been performed by those who have conducted research
on the various feature comparison methods criticized by PCAST. In addition, a substantial
amount of empirical evidence has been generated by these studies. PCAST, however,
provides no explanation why the data generated by the types of studies listed in the
federal definition of "valid scientific evidence" — which are apparently sufficient to support
valid clinical trial designs and evaluations — are nevertheless insufficient to support the
validation of forensic feature comparison methods. PCAST's failure to explain this discrepant
treatment further calls into question both its stated criteria and the analogy that it offers
between clinical trials and feature comparison method validation.

The fifth problem with these criteria is that some of them are unsupported by a single

6




citation to extant scientific literature on the topic of scientific validation. Absent a single
citation that would individually or collectively support their inclusion in PCAST's list of criteria,
one is left to assume that some of these elements are simply the original creation of the
Working Group. This suspicion is augmented by the fact that PCAST attempts to boister the
gravitas of its Report, and in turn the questioned criteria, by a logically fallacious
appeal to its own authority.

On page 144 of its Report, PCAST asserts that "from a scientific standpoint, subsequent events
have indeed undermined the continuing validity of conclusions that were not based on
appropriate empirical evidence." (Emphasis added). Incredibly, PCAST attempts to fortify this
conclusion by bootstrapping its own Report as one of these "subsequent events," claiming,
"the scientific review in this report by PCAST, the leading scientific advisory body established
by the Executive Branch, finding that some forensic feature-comparison methods lack
foundational validity" is one of those events {(PCAST Report, p. 144). This determination
was, of course, based upon PCAST's concurrent conclusion that the feature comparison
methods examined in its Report did not fully meet each of its newly-minted validation criteria.
Thus, rather than citing established scientific literature in support of its criteria, PCAST instead
appeals to its readers' acceptance of a logical fallacy as a substitute for scientific authority.
This maneuver is not persuasive. It wholly fails to support the scientific necessity that each
of its listed factors be satisfied as conditions precedent to establishing the foundational
validity of the feature comparison methods examined.

The sixth problem with these criteria is PCAST's apparent failure to consider {or lack of
concern about) the importance of establishing the external validity of validation studies that
may incorporate its mandatory criteria. In science, "external validity" concerns whether or not
the findings derived from scientific research studies can be extrapolated to individual events
and instances. In other words, it is the extent to which the results of a study can be
generalized to other situations and to other people.

This is important because, in its Report, PCAST urges that one "key criteria for validity as
applied" is that "[t]he forensic examiner should {for both reports and testimony] report the
overall false positive rate and sensitivity for the method established in the studies of
foundational validity and should demonstrate that the samples used in the foundational
studies are relevant to the facts of the case." (PCAST Report, p. 56) (Emphasis added).
Furthermore, PCAST asserts, "Since empirical measurements are based on a limited number of
samples, SEN [sensitivity] and FPR [false positive rate} cannot be measured exactly, but only
estimated. Because of the finite sample sizes, the maximum likelihood estimates thus do not
tell the whole story. Rather, it is necessary and appropriate to quote confidence bounds
within which SEN, and PR, are highly likely to lie" {PCAST Report, 152). To that end, the
Report advocates that:

Because one should be primarily concerned oabout overestimating SEN or
underestimating FPR, it is appropriate to use a one-sided confidence
bound. By convention, a confidence level of 95 percent is most widely



used—meaning that there is a 5 percent chance the true value exceeds
the bound. Upper 95 percent one-sided confidence bounds should thus
be used for assessing the error rates and the associated quantities that
characterize forensic feature matching methods. (The use of lower values
maly rightly be viewed with suspicion as an attempt at obfuscf:ttion.)1

Applying these principles to latent print casework, for example, it is PCAST's position that an
examiner should report the following to a jury:

[TIhat (1) only two properly designed studies of the accuracy of latent
fingerprint analysis have been conducted and (2) these studies found false
positive rates that could be as high as 1 in 306 [only the upper bound value]
. in one study and 1 in 18 [only the upper bound value] in the other study.
This would appropriately inform jurors that errors occur at detectable
frequencies, allowing them to weigh the probative value of the evidence.

(PCAST Report, p. 96).

It is apparently PCAST's position that not only should its validation criteria be used by
foundational feature comparison studies without any attempt to establish the external
validity of findings derived from those studies when applied to casework and testimony, but
also that the jury should only be informed of the upper bound confidence values derived from
studies whose external validity has not been established. The former position promotes the
generalization of data to specific cases when the scientific legitimacy of those inferences has
not been established. The latter position is little more than thinly-veiled partisanship
masquerading as science.

Accordingly, because PCAST has failed to demonstrate that its requisite criteria for
establishing foundational validity will provide externally valid rates for false positives and
method sensitivity when applied to individual cases, its insistence that validation studies
"must satisfy" these criteria isunpersuasive.

Conclusion

In Chapter 9, Actions to Ensure Scientific Validity in Forensic Science: Recommendations to the
Judiciary, the PCAST Report calls for the courts to re-examine court decisions that admitted
forensic feature-comparison methods and overrule those decisions. PCAST claims the courts

! This statement has already received academic criticism for its biased formulation. In his Forensic Science,
Statistics & the Law blog, Professor David Kaye states, "l have to say that this paragraph seems to contradict the
ideal of a forensic scientist who does not take sides." Professor Kaye continues by observing, "It is fair to say that
the exclusive use of lower values — instead of both upper and lower values — may rightly be viewed with
suspicion as an attempt at obfuscation. It is equally fair to say that the exclusive use of upper values also may
rightly be viewed with suspicion as an attempt at obfuscation." PCAST's Sampling Errors, David Kaye, Forensic
Science, Statistics & the Law, October 24, 2016 (original emphasis). Available at: http://for-sci-
law.blogspot.com/2016/10/pcasts-sampling-errors.html.
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should give deference to the 2009 NRC report from the National Academy of Sciences and “the
scientific review in this report by PCAST.”

PCAST should take note that the conclusions of the NRC report have already been addressed in
United States v. Rose, 672 F. Supp. 2d 723 {D. Md. 2009) where the Federal Judge quoted from
Judge Harry Edwards, who co-chaired the project, “made it clear that nothing in the Report was
intended to answer the question whether forensic evidence in a particular case is admissible
under applicable law.”

Meanwhile in the short period of time since the release of the PCAST report, it has been
generally rejected by the Courts as having no relevance to the issue of admissibility feature
comparison evidence (See Appendix A).

In conclusion, instead of providing PCAST with a list of "appropriately designed, research
studies" establishing the foundational validity of contemporarily practiced feature
comparison methods (per its own definition of "appropriate design"}, the burden should be on
PCAST to first provide the forensic community with information in support of the following
requests:

{1) Provide your own list of relevant scientific authorities that specifically justify the
criteria that you claim forensic feature comparison methods "must satisfy." {PCAST
Report, pp. 52-52); (2)Specifically explain how and why these authorities have direct
applicability to establishing the foundational validity of the questioned feature
comparison methods; and (3} Explain why the satisfaction of each and every one of
the listed criteria is a sine gua non for establishing the foundational validity of the
feature comparison methods examined in your Report, despite the fact that these
same criteria are nof mandatory in other realms of scientific validation — such as
your chosen analogy — clinical trial design and experimentation.

Only after PCAST provides the forensic science community with sufficient information and
convincing reasons which establish the scientific standing of its validation criteria should the
forensic science community bear the burden of providing PCAST with studies that can be
assessed against the elements of its currently disputed concept of an "appropriately
designed" research study. The responsibie approach would be for the PCAST to withdraw the
September 2016 publication on the grounds extensive research was not conducted prior to
the document being published and the PCAST is now soliciting citations for additional
research.

Sincerely,

4

Michael A. Ramos
President
National District Attorneys Association



Appendix A
Recent Court Decisions Since Publication of the PCAST Report

Commonwealth v. Legore, the Superior Court for Massachusetts refused to reverse the
precedents admitting firearms ballistic comparison. The court said, “After a non-evidentiary
hearing and argument, and upon review of the PCAST report, there is no basis to disturb settled
law permitting a properly qualified firearms expert from offering opinion evidence under Rule
702 relating to a comparison and match....”

U.S. v. Chester, United States District Court for the Northern District of Illinois Eastern Division,
“In short, the PCAST report does not undermine the general reliability of firearm toolmark
analysis or require exclusion of the proffered opinions in this case.”

People v. Michael Robinson, defense attorneys argued that TrueAllele was "novel," based on a
2016 report from the President's Council of Advisors on Science and Technology (PCAST). This
report advised DNA technology limitations without citing scientific support. Since the defense
did not present evidence supporting PCAST findings, the prosecution reasoned there should not
be a hearing. The judge found according to Pennsylvania precedent, not PCAST report. In 2012,
a Superior Court ruled TrueAllele science admissible.

Minnesota v. Yellow, defense attorneys argued the PCAST was an important development, and
should encourage the court to reconsider its prior decision on the foundational reliability of
complex DNA mixtures. The Court found that the opinions met the standard for foundational
reliability, and nothing in the PCAST Report changes that finding.
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Dear PCAST Committee, This email is in response to your request for
additional information on foundational validity in forensic sciences.
Firearms identification has been practiced for over 100 years in the
United States and two research papers are cited for your review (there
are obviously many, many others as well). You asked for ‘firearms
analysis to associate ammunition with an individual gun’. The papers are
titled:

Evaluation of GLOCK 9 mm Firing Pin
Aperture Shear Mark Individuality Based On
1,632 Different Pistols by Traditional Pattern
Matching and IBIS Pattern Recognition

James E. Hamby, o Ph.D.; Stephen Norris,* B.S.; and Nicholas D.K. Petraco, Ph.D.

(Published in the January 2016 Issue of the Journal of Forensic Sciences)
(This is an ongoing research project and is approaching over 3,000 different pistols, manufactured during a 25
year period in both Austria and the United States. Test fired ammunition components represents some 24
different headstamp, primer and cartridge case compositions.)

The Identification of Bullets Fired from 10 Consecutively Rifled 9mm
Ruger Pistol Barrels: A Research Project Involving 507 Participants from

20 Countries
James Hamby, Ph.D., David Brundage, M.S., and James Thorpe, Ph.D.
Published in the AFTE Journal, Volume 41, Number 2, Fall 2009

(This is an ongoing research project and to date has some 686 participants — eleven of whom used sort type of
ballistics imaging (many of whom are not firearms examiners) — from 32 countries. Although it was referred to
as a ‘suduko’ type of event, it is obviously a complex examination with an incredibly low error rate. The
researchers recognize that it is a closed set (sampling without replacement) but also represents the ability to
individualize bullets fired from consecutively manufactured barrels)

Thank you for your consideration to this email. James E. Hamby, Ph.D:



From: SRR T |

To:
Subject: Toolmarks
Date: Saturday, December 3, 2016 11:46:58 AM

https://afte .org/uploads/documents/postion-pcast-2015.pdf

To whom it may concern,

AFTE has published many articles related to the study of Toolmarks when it comes to
firearms and the evaluation of evidence for examination. The above link in my opinion
provides articles with evidence based research into the science with proven results. I, myself,
have participated in a study that included a "ten barrel test" . The reproduceable markings can
be quantified by a properly trained examiner whose experience and knowledge results from
similarly based programs that qualify those as a Toolmarks examiner by AFTE standards. A
majority of us today, especially independents such as myself, continue to not only keep up to
date with current journal articles from resources such as AFTE, but continue to participate in
blind examinations such as those from private companies as CTS to remain proficient. At the
conclusion of their studies, we are provided with results from the organization which reflect an
accurate error rate which is generally consistent with the field.

Not every investigation into ballistics evaluation of recovered evidence is clear cut, but with
the proper training and experience I feel in my opinion the scientific conclusions that I
personally have reached were those based on the scientific principles and proven foundation of
Toolmarks comparisons. These studies are repeated often and documented as such in the
various scholarly journals. The science as a whole welcomes inquiries and is constantly
critically analyzing any new developments in the field from a host of sources

Merry Christmas and Happy New Year
Bruno R.Valenti

Sent from my iPhone



Organization of Scientific Area Committees (OSAC)
Firearms and Toolmarks Subcommittee

Response to the President’s Council of Advisors on Science and
Technology {PCAST) Call for Additional References Regarding its
Report “Forensic Science in Criminal Courts: Ensuring Scientific
Validity of Feature-Comparison Methods”

14 December 2016

The Organization of Scientific Area Committees (OSAC)* Firearms and Toolmarks Subcommittee
is composed of sixteen forensic practitioners with a combined 307 years of forensic science
experience. The practitioners are drawn from federal, state, county, local and private
laboratories from across the country. Additionally, the subcommittee inciudes four non-
practitioners with backgrounds in metrology, statistics, and computer science. The
subcommittee’s composition meets OSAC’s goals of diversity of both forensic practitioners and
non-practitioners. Given the responsibility of the subcommittee for informing the process of
developing standards and guidelines for the forensic discipline of firearm and tooimark
identification, we feel it necessary to respond to the report published by the President’s Council
of Advisors on Science and Technology (PCAST) and the subsequent Reguest for Informaticn
(RF1) distributed by PCAST co-chair Dy. Eric Lander on December 2, 2016.

The PCAST report addresses numerous subjects and seven disciplines of forensic science. We
will limit our response to those portions addressing firearm and toolmark identification.

We disagree with PCAST’s conclusion that “...firearms analysis currently falls short of the
criteria for foundational validity, because there is only a single appropriately designed study to
measure validity and estimate reliability.” This response will outline why we find PCAST's
analysis to be inaccurate.

" The purpose of the Organization of Scientific Area Committees {OSAC) is “...to strengthen the nation’s use of
forensic science by providing technical leadership necessary to facilitate the development and promulgation of
consensus-based documentary standards and guidelines for forensic science, promoting standards and guidelines
that are fit-for-purpose and based on sound scientific principles, promaoting the use of OSAC standards and
guidelines by accreditation and certification bodies, and establishing and maintaining working relationships with
other similar organizations.” https://www.nist.gov/topics/forensic-science/about-osac



OSAC Firearms and Toolmarks Subcommittee’s Response to the PCAST Call for Additional References

1 Black-Box (Validation) Study Analysis
PCAST analyzed nine firearm black-box studies and concluded that firearms identification “falls
short of the criteria for foundational validity.”*

We disagree with their position because it
ignores critical details within each study and their review falls short in understanding the
research value these studies provide when considered in totality. Additionally, other validation
studies have been performed that were not addressed by PCAST,>**%7:2

1.1 Introduction

Black-box studies (a common type of validation study) use ground truth to evaluate the
soundness and accuracy of examinations. PCAST required that a validation study be of “black-
box” design and that samples be examined completely independently of each other. PCAST set
the following criteria for determining if a forensic science discipline is scientifically valid: 1) at
least two black-box studies that allow for the calculation of a False Positive Error Rate (FPR) and
2) an error rate less than 5%°. There is no reference or justification to support that this is a
generally-accepted standard.

The studies examined by PCAST were categorized into four different types: “within-set,” “set- .
to-set,” “partly open set,” and “independent/open.” Within these categories, PCAST examined
nine validation studies and discounted the data from eight due to test design. PCAST also made
errors when summarizing these studies. They did not accurately count the number of
responses, or left data out, from four of the nine validation studies used for their analysis. A
summary of the errors can be found in Appendix A.

2 pcasT Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”,”
(September, 2016) Finding 6, pg 112.

* Lyons, D. J. “The Identification of Consecutively Manufactured Extractors.” AFTE Journal, Vo, 41, No. 3 (2009):
246-256.

4 Bunch, S. G., and D. Murphy. “A Comprehensive Validity Study for the Forensic Examination of Cartridge Cases.”
AFTE Journal, Vol. 35, No. 2 (2003): 201-203.

g Mayland, B. and C. Tucker. “Validation of Obturation Marks in Consecutively Reamed Chambers.” AFTE Journal,
Vol. 44, No. 2 (2012): 167-168.

6 Fadul, T. G. “An Empirical Study to Evaluate the Repeatability and Uniqueness of Striations/Impressions Imparted
on Consecutively Manufactured Glock EBIS Gun Barrels.” AFTE Journal, Vol. 43, No 1 (2011): 37-44.

¢ Cazes, M. and J. Goudeau. “Validation Study Results from Hi-Point Consecutively Manufactured Slides.” AFTE
Journal, Vol. 45, No. 2 (2013): 175-177.

B listing and summary of additional supportive research, and validation studies pertaining to non-firearm
toolmarks, can be found in the SWGGUN Admissibility Resource Kit (ARK). https://afte.org/resources/swggun-
ark/testability-of-the-scientific-principle

9 pcast Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”,”
(September, 2016) “Finding 6”, pp 112, Appendix A, pg 152.
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Below we summarize PCAST's analysis and why we disagree with their findings.

1.2 Within-set Studies

PCAST summarized two “within-set” validation studies. The PCAST committee could not
calculate a False Positive Error Rate (FPR) using these studies, so they did not use them to
measure the validity of firearm and toolmark identification.

10,11

The dismissal of these studies does not accurately reflect the scientific value of the research. A
total of 1037 different-source comparisons were performed. No false identifications or false
eliminations were reported by any of the participants. Therefore, these two studies provide
empirical and independent support that the overall error rate for firearm and toolmark
identification is low, despite the inability to calculate a false positive error rate.

1.3 Set-to-Set Comparison/Closed Set Studies

PCAST summarized four “closed set” studies,'*!31%15

PCAST is critical of these test designs
because each comparison is not independent of the others. The assumption is that examiners
may be able to deconstruct the test design, and PCAST likens this to the same logic as solving a
“Sudoku” puzzle.'® The analogy used by PCAST misrepresents the challenge posed by these
tests. First, three of the studies (Brundage et al., Hamby et al., Fadul et al.) used consecutively
manufactured firearms. Consecutively manufactured firearms have been shown to have the
potential for subclass characteristics, which are toolmarks that sometimes carry over, with very

D Smith, E. “Cartridge case and bullet comparison validation study with firearms submitted in casework.” AFTE
Journal, Vol. 37, No. 2 (2005): 130-5. There were a total of 16 same-source comparisons and 704 different-source
comparisons in this study. 13 of the 16 same-source comparisons were correctly identified and 3 were
inconclusive. There were no false identifications or false eliminations reported.

" DeFrance, C.S., and M.D. Van Arsdale. “Validation study of electrochemical rifling.” AFTE Journal, Vol. 35, No. 1
(2003): 35-7. There were a total of 45 same-source comparisons and 333 different-source comparisons. 42 of the
45 same-source comparisons were correctly identified and 3 were inconclusive. There were no false identifications
or false eliminations.

1 Stroman, A. “Empirically determined frequency of error in cartridge case examinations using a declared double-
blind format.” AFTE Journal, Vol. 46, No. 2 (2014):157-175.

13 Brundage, D.J. “The identification of consecutively rifled gun barrels.” AFTE Journal, Vol. 30, No. 3 (1998): 438-
44,

1 Fadul, T.G., Hernandez, G.A., Stoiloff, S., and S. Gulati. “An empirical study to improve the scientific foundation
of forensic firearm and tool mark identification utilizing 10 consecutively manufactured slides.” AFTE Journal. Vol.
45, No. 4 (2013): 376-93.

15 Hamby, J.E., Brundage, D.J., and J.W. Thorpe. “The identification of bullets fired from 10 consecutively rifled
9mm Ruger pistol barrels: a research project involving 507 participants from 20 countries.” AFTE Journal, Vol. 41,
No. 2 (2009): 99-110.

'® pcasT Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”
(September, 2016) Section 5.5, pp 106. PCAST was quoting Jeff Salyards, Director of the Defense Forensic Science
Center.
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little change or variation, from one machined part to the next on the same production
line.*"*®** Qualified examiners are able to recognize these marks so as not to use them for
conclusions of identification. Though consecutively manufactured firearms are not likely to be
encountered in actual casework, the authors used them in an attempt to create a worst-case
scenario (i.e. potential best known non-matches). Additionally, each test used more questioned
samples than knowns {15 questioned samples from 10 consecutively manufactured firearms).
Therefore, taking these tests was not as simple as figuring out a few of the correct answers and
then deducing the rest. Since these tests used consecutively manufactured samples, it was just
as important to know if examiners could correctly identify samples as it was to know if samples
were falsely identified. This is the reason at least one true match was provided with each
questioned cartridge case.

Another study discounted by PCAST was conducted by Stroman et al. This validation study used
cartridge cases that had been fired in Smith & Wesson pistols. While this study did not use
consecutively-manufactured samples, the firearms were the same make and model and had
documented subclass characteristics on the firearms’ ejectors. Again, these are potentially
difficult samples and provide the opportunity for false positive errors, yet none were observed.

In each of these four studies, the authors attempted to create tests with potentially challenging
samples. Each of these studies provide insight into the overali error rate (see Appendix A for
more details about each study). The fact that few false positive errors occur is strong evidence
in support of the discipline of firearm and toolmark identification. These studies present
evidence that firearm and toolmark examiners can reliably and accurately associate questioned
toolmarks to the correct source tool. Though the test design does not fit the model proposed
by PCAST, these studies present valuable performance estimates and should not be
disregarded. When viewed collectively, these studies are independent of each other and show
a low overall error rate among the tested examiners. This provides strong support for the
overall validity of firearm and toolmark identification.

7 Weller, T.J., Zheng, X.A,, Thompson, R.M., and F. Tulleners. “Confocal microscopy analysis of breech face marks
on fired cartridge cases from 10 consecutively manufactured pistol slides.” Journal of Forensic Sciences, Vol, 57,
No. 4 (2012): 912-17. This study has documented subclass characteristics among the 10 consecutively
manufactured pistol slides. An eleventh pistol slide, that was not part of the consecutive batch, no longer has the
same subclass toolmarks.

18 Miller )., Beach G. “Toolmarks: Examining The Possibility of Subclass Characteristics” AFTE Journal, Vol 32, No 4:
296-345,

1% Subctass characteristics are features that may be produced during manufacture that are consistent among items
fabricated by the same tool in the same approximate state of wear. These features are not determined prior to
manufacture and are more restrictive than class characteristics. AFTE Glossary, 6th Edition.
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1.4 Partly Open Set
PCAST summarized another validation study and categorized it as “partly open.
like to highlight the fact that this study also uses consecutively manufactured samples and, as

2
»20 \We would

described above, provides examiners with test samples which are most likely to have similar
toolmarks since the firearms used to create them were sequentially manufactured with the
same tools.

PCAST’s statistical analysis of this report focused solely on two unknowns that had no matching
known. This analysis is incomplete, and differs from the analysis used by PCAST in the “set-to-
set/closed set” and “open set” studies where all “conclusive” responses were used to calculate
the False Positive Error Rate.

The authors’ reported error rate (0.7%) was low and this study provides an additional
independent study establishing that firearm and toolmark examiners can accurately associate
questioned toolmarks to the correct source tool.

1.5 Open Set

PCAST summarized another validation study and categorized it as “open.”*!

Each test taker in this study was instructed to work independently and not collaborate with
other test takers. These instructions negate an important quality assurance step used in most
accredited forensic laboratories: the peer review process known as verification®>. Verification is
a reevaluation of a comparison by another qualified examiner to ensure there is sufficient data
to support the conclusion. Many laboratories accomplish this by direct reexamination of the
evidence, while others use representative photographs of sufficient quality for the verification
step. The errors reported in this paper may have been caught if verification were allowed. This
suggests the true false positive error rate may be lower than calculated in this study. We would
like to highlight that Baldwin et al. discusses this point in their study (emphasis added):

“This finding does not mean that 1% of the time each examiner will make a false-positive error.
Nor does it mean that 1% of the time laboratories or agencies would report false positives, since

0 Fadul, T.G., Hernandez, G.A., Stoiloff, S., and S. Gulati. “An empirical study to improve the scientific foundation
of forensic firearm and tool mark identification utilizing consecutively manufactured Glock EBIS barrels with the
same EBIS pattern.” National Institute of Justice Grant #2010-DN-BX-K269, December 2013.

21 Baldwin, D.P., Bajic, S.J., Morris, M., and D. Zamzow. “A study of false-positive and false-negative error rates in
cartridge case comparisons.” Ames Laboratory, USDOE, Technical Report #1S-5207 (2014)
afte.org/uploads/documents/swggun-false- postive-false-negative-usdoe.pdf.

22 |1 the other validation studies discussed above, verification was also unlikely because test takers were not to
collaborate with other test takers.
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this study did not include standard or existing quality assurance procedures, such as peer
review or blind reanalysis. What this result does suggest is that quality assurance is extremely
important in firearms analysis and that an effective QA system must include the means to
identify and correct issues with sufficient monitoring, proficiency testing, and checking in order

to find false-positive errors that may be occurring at or below the rates observed in this study.
#23

It should be noted that PCAST used the data from the study to recalculate a false positive error
rate by using only exclusion conclusions and omitting the inconclusive results. This resulted in a
rise in the calculated error rate from 1.01% to 1.5%. The different error rates provide different
answers for different questions: The Baldwin et al. error rate estimates how often non-
matching cartridge cases are falsely identified, while PCAST’s error rate estimates the
proportion of definitive (i.e. not inconclusive) results that are incorrect when non-matching
cartridge cases are examined.

Baldwin et al. provide a discussion about inconclusive results (emphasis added):**

“If the examiner does not find sufficient matching detail to uniquely identify a common source
for the known and questioned samples, and there are no class characteristics such as caliber
that would preclude the cases as having been fired from the same-source firearm, a finding of
inconclusive is an appropriate answer (and not counted as an errer or as a non-answer in this
study). The underlying rationale for this finding of inconclusive is that the examiner is unable to
locate sufficient corresponding individual characteristics to either include or exclude an exhibit
as having been fired in a particular firearm and the possible reasons are numerous as to why
insufficient marks exist, As is determined in this study, there are also a significant number of
times that the firearm fails to make clear and reproducible marks {which very well might have
happened for a questioned case).”

Baldwin et al. found the rate of poor quality mark production to be 2.3% {+/- 1.4%). This rate is
double the calculated false positive error rate. This provides support for the use of inconclusive
results in the calculation of error rates.

We would like to highlight the fact that the Baldwin study found “all but two of the 22 false
identification calls were made by five of 218 examiners.”? This indicates when errors do occur,
they may be committed by the same few examiners. This supports the need for rigorous

23 Baldwin et al. Pg 18,
' Baldwin et al. Pg 6
% Batdwin et al. Pg 16,
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training, periodic proficiency testing, continuing education and thorough laboratory quality
control measures.

1.6 Smith et al. Study

The final validation study examined by PCAST was the Smith et al. study, in which the authors
created a test that mimics casework®. PCAST concluded this study was insufficient to test the
validity of firearm identification:

“While interesting, the paper clearly is not a black-box study to assess the reliability of firearms
analysis to associate ammunition with a particular gun, and its results cannot be compared to
previous studies.”*’

PCAST recognizes the study as being new and novel. We disagree with their observation that
since the study is not a “black-box” design then the study does not provide support for the
validity of firearm identification. In the test design that PCAST requires, test takers examine
only one questioned sample at a time, independent of other questioned samples, While we
understand this test design allows for easier statistical analysis, one to one comparisons are not
an accurate representation of actual casework. A typical examination for a firearm examiner
entails opening a package of evidence with dozens of items and attempting to associate or
disassociate the items. This study tested that process by forcing examiners to make all of the
typical decisions they would make in casework, rather than conducting a series of examinations
on isolated pairs of specimens. The test takers were presented with bullets and cartridge cases
of various ammunition types, and asked to perform both class and individual characteristic
evaluations. They were not given any information about the source of any of the items.

Test takers were faced with a real-world scenario and performed very well. Although not
stated in the PCAST footnote referencing this article, the overall error rate for this study was
0.303%.

1.7 Conclusions

PCAST reviewed nine validation studies and through their criteria, elected to discount eight of
those studies. Two of those disregarded studies (the “within-set” design) had no false positive
results. Five of the disregarded studies had very few false positives (see Appendix A) and the
last study (which attempted to replicate casework) found a low overall error rate (0.303%).

= Smith, T., Smith, G.A., Snipes, J.B. “A Validation Study of The Bullet and Cartridge Case Comparisons Using
Samples Representative of Actual Casework.” Journal of Forensic Sciences, Vol. 61, No. 4: 939-946

T pCAST Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”
(September, 2016), footnote #335.



OSAC Firearms and Toolmarks Subcommittee’s Response to the PCAST Call for Additional References

When PCAST set criteria for the validity of a forensic science discipline, they chose an arbitrary
threshold of having at least two black box studies. The black-box test design favored by PCAST
requires that each questioned sample be examined independently from each other. Examiners
are not faced with completely independent examinations when they analyze evidence in a case.
It is not realistic, if trying to replicate casework, to have fifteen or twenty individual sets of
comparisons, each of which is made independent of each other. The PCAST-proposed design
may make sense from a purely statistical standpoint, but does not simulate the practical task of
an examiner performing casework. The OSAC subcommittee believes that various types of tests
are valuable and can provide meaningful information regarding the potential error rates®,

2.0 Subjective and Objective Methods
PCAST defines objective feature comparison methods as “methods consisting of procedures
that are each defined with enough standardized and quantifiable detail that they can be

performed by either an automated system or human examiners exercising little or no
Judgment” (emphasis added). PCAST defines subjective methods as “methods including key
procedures that involve significant human judgment™* (emphasis added).

In fact, all disciplines, including firearm and toolmark identification, require some human
judgment or interpretation of results. Implementation of more objective techniques may make
those interpretations easier, but judgment will still be required.

We agree, however, with the goal of continuing to research and implement more objective
analytical methods. One of our subcommittee’s task groups is writing standards that will assist
industry and crime laboratories with the validation and implementation of new technology.
Additionally, there is a growing body of research using three-dimensional instrumentation and
advanced machine-learning algorithms to compare toolmarks. The research fails to disprove
the foundational premise of firearm and toolmark identification: that fired ammunition
components can be associated to (or eliminated from) the originating firearm through the
comparison of microscopic toolmarks. In fact, the recent research provides strong objective

%8 Different test designs estimate different error rates. For example: when examining evidence from an officer
involved shooting where each officer admits to firing their firearm: error rates based on data from “set to
set/closed-set” studies may be more appropriate while the Smith et. al. study may provide a better estimate for an
examination of numerous items with no questioned firearm. All of these studies have the potential to provide a
relevant error rate estimates and the “true” error rate may not be the same for each situation.

29 pcAST Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”
(September 2016) Section 4.1, pp. 46-47.



OSAC Firearms and Toolmarks Subcommittee’s Response to the PCAST Call for Additional References

support for this premise. The PCAST committee was provided with 25 citations by our
subcommittee documenting this work; however, their report only cites two studies.

3.0 AFTE Theory of Identification is Circular Logic
PCAST states that the AFTE Theory of Identification is circular logic. PCAST’s summary of the
theory makes it sound circular:

“It declares that an examiner may state that two toolmarks have a “common origin” when their

features are in “sufficient agreement.” It then defines “sufficient agreement” as occurring when

the examiner considers it a “practical impossibility” that the toolmarks have different origins.”*°

The PCAST Report makes the AFTE Theory sound circular by ignoring the basis for “sufficient
agreement.” This is based on a misunderstanding of what constitutes “sufficient agreement.”
They claim it is an arbitrary point at which the examiner considers it a “practical impossibility.”
PCAST seems to believe that this “practical impossibility” is arbitrarily decided by the examiner,
thus making the theory sound circular. This is incorrect. The sufficient agreement threshold is
exhibited when the amount of agreement is greater than best known non-matches established
by the community and conveyed to each examiner through a lengthy and extensive training
program. That is, it is not an arbitrary point. In fact, by definition, no non-matches can ever
have more similarity than the sufficient agreement point. When the basis for the ground truth
is included, the AFTE Theory is not circular.

4.0 Focus on Training and Experience Rather Than Empirical Demonstration of Accuracy
PCAST quote:

“Many practitioners hold an honest belief that they are able to make accurate judgments about

identification based on their training and experience.*"

In all professions, proper training and experience is critical. Firearm and toolmark identification
is like other applied sciences (e.g. medicine, engineering) that require training to become
proficient and experience to further refine and maintain that proficiency. There is only so much
that textbooks can teach, and structured training (like residency for physicians) is a critical
aspect of developing proficiency. It is through rigorous training that examiners develop their
criteria for what constitutes an elimination, an identification, or an inconclusive result. They

%0 peasT Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”
(September 2016) Section 4.7, pp. 60.

3 peasT Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”
(September 2016) Section 4.7, pp 60-61.
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learn and understand the differences in microscopic agreement between toolmarks created by
the same source (a known match) and toolmarks created by different sources (a known non-
match) and how that understanding factors into any conclusion of elimination, inconclusive, or
identification. Examiners do not memorize all patterns that have been observed, as suggested
in the PCAST report.

5.0 Conclusion

The Firearms and Toolmarks Subcommittee of OSAC fundamentally disagrees with the
conclusions regarding the firearm and toolmark identification discipline presented in the PCAST
report. Four major points have been put forth in this response. First, we disagree with the
premise that a structured black-box study is the only useful way to gain insight into both the
foundations of firearm and toolmark identification and examiner error rates. Taken
collectively, the published studies support the underlying principles of firearm and toolmark
examination and the fact that examiner error rates are quite low. PCAST's critique of these
studies included several misunderstandings. Second, PCAST's dismissal of methods employing a
subjective component discounts the core scientific methods that have been used for hundreds
of years. Third, PCAST misunderstands and misquotes the AFTE Theory of Identification.
PCAST's summary of the AFTE Theory of Identification leaves out important provisions. Fourth,
PCAST minimizes the value of training and experience. The training received by firearm
examiners includes both subjective and objective components and is comparable to the
domain-specific rigor of other applied scientific fields.

We do not agree that firearm identification “...falls short of the criteria for foundational
validity.” However, we do agree that a hallmark of any scientific endeavor is ongoing research
and technology development. Indeed, our subcommittee, which is tasked with writing
standards and providing guidance to the profession, would not exist if it was believed that the
field of firearm identification is flawless and requires no improvement. As such, we are hopeful
that the path forward from the PCAST report is a renewed commitment to research in the
forensic sciences, continued testing of foundational principles, and a more robust collaboration
between the academic and forensic practitioner communities.
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Appendix A
Errors and Omissions in PCAST Summaries of Firearms and Toolmarks
Validation Studies

PCAST incorrectly summarized four of the nine validation studies used in their analysis of
firearm and toolmark identification. For clarity, we first repeat some of the terms used by
PCAST to illustrate how they (and we) calculated these error rates.

“The results of a given empirical study can be summarized by four values: the number of
occurrences in the study of true positives (TP), false positives (FP), faise negatives (FN}, and true
negatives {TN)"*

PCAST used the following formula to calculate the “maximum likelihood estimate of FPR”:
FP/(FP+TN).*® For those unfamiliar with statistics, we recalculate the FPR for the Baldwin et al.
study. There were a total of 2178 different-source comparisons performed; 1421 were
declared elimination, 735 were reported as inconclusive, and there were 22 false positives
reported. PCAST did not use inconclusive results in their statistical treatment (as we discussed
in Section 1.5). Therefore, PCAST's FPR caiculation for the Baldwin et al. study is: FPR=
22/(1421+22}. This equals 0.015, or 1.5%. Conversely, recognizing that inconclusive results are
appropriate™, Baldwin, et al. included inconclusive results in their calculations, as follows: FPR=
22/(1421+735+22). This equals 0.010, or 1.0%.*

For the “set-to-set/closed” studies, PCAST used correct identifications in lieu of using true
negatives®, PCAST does not explain or justify why they did this. The error rates reported by
PCAST for the “set-to-set/closed” studies found in Table 2 on page 111 of the PCAST report are
not false positive error rates and should not be reported as such.

Below we summarize the errors made by PCAST in their assessment of four of the nine studies.

32 peast Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”,
Appendix A, pg 152. )

% peast Report “Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods”,
Appendix A, pg 152.

* Baldwin et al,, pg 6.

% Baldwin et al., pg 16.

% See footnote 327 of PCAST report: “Of the 10,230 answers returned across the three studies, there were there
were 10,205 correct assignments, 23 inconclusive examinations and 2 false positives.”
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Brundage Study
The PCAST summary of the Brundage Study is (emphasis added):

In this study, bullets were fired from 10 consecutively manufactured 9 millimeter Ruger P-85
semi-automatic pistol barrels. Each of 30 examiners received a test set containing 20
questioned bullets to compare to a set of 15 standards, containing at least one bullet fired from
each of the 10 guns. Of the 300 answers returned, there were no incorrect assignments and
one inconclusive examination.

This is not correct. The Brundage study consisted of 15 questioned bullets compared to a set of
10 standards (two test fired bullets from each standard set). This test was sent to 30 examiners
and 450 answers returned (30 examiners x 15 questioned bullets) with no false positives and
one inconclusive conclusion.

Hamby Study
The Hamby Study was a continuation of the Brundage study. Hamby et al. used the same

firearm and ten consecutively manufactured barrels to produce an additional 240 test sets.
The PCAST summary of this study states (emphasis added):

In this study, bullets were fired from 10 consecutively rifled Ruger P-85 barrels. Each of 440
examiners received a test set consisting of 15 questioned bullets and two known standards from
each of the 10 guns. Of the 6600 answers returned, there were 6593 correct assignments,
seven inconclusive examinations and no false positives.

This study combined the conclusions from the Brundage study, and additional results collected
with both the original Brundage test sets and the 240 new test sets. If we subtract the original
30 responses from the Brundage study, the Hamby et al. article reports an additional 477
examiners having completed the test, for a total of 7155 answers with 7148 correct
assignments and 7 inconclusive conclusions.

Fadul Pistol Slides Study
The PCAST summary of the Fadul Pistol Slides Study:

In this study, bullets were fired from 10 consecutively manufactured semi- automatic 9mm
Ruger pistol slides. Each of 217 examiners received a test set consisting of 15 questioned
cartridge cases and two known cartridge cases from each of the 10 guns, Of the 3255 answers

returned, there were 3239 correct assignments, 14 inconclusive examinations and two false
positives.

12
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This summary is correct; however, it is incomplete because it only includes Phase 1 of the study.
It does not include the second phase of the study, the durability study. Results for Phase 1 and
2 are included in the same report. In Phase 2, an additional 114 examiners participated. The
examiners received 5 more questioned cartridge cases (after the firearm had been fired 1000
times) and were asked to compare these cartridge cases to the 10 cartridge cases from the
knowns that were previously received. A total of 570 answers were returned with 564 correct
assignments, 5 inconclusive and one false positive.

Fadul EBIS Barrels Study
The PCAST summary of this study states {emphasis added):

The 165 examiners in the study were asked to assign a collection of 15 questioned samples,
fired from 10 pistols, to a collection of known standards; two of the 15 questioned samples
came from a gun for which known standards were not provided.

This is not correct. Each test consisted of two known standards from each of the 8 pistols and
10 questioned samples. One of the known pistols had no matching questioned samples.
Additionally, two of the unknowns had no matching known pistol.

Fadul et al. reported an overall error rate of 0.7% (95% lower bound 0.2%, 95% upper bound
1.2%).

13
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I'm sorry I have little time to reply due to a very sick relative but this is important so I'm sending a brief response.

PCASTs only error was in thinking fingerprints has been validated. The 2 studies referred to are only looking at
conclusions, not how the conclusions were arrived at. They showed that conclusions are fairly reliable but more
important is when conclusions are not reliable (for all pattern evidence disciplines). Conclusions are less reliable as
the comparison becomes more complex (see Mnookin article attached). The next step is stating when comparisons
are complex, which can easily be accomplished but is only being done in a small percentage of labs (see Triplett
article attached).

Reliability is good, but knowing when and which conclusions are reliable is the only way to strengthen forensics.

Sincerely,

Michele Triplett

Forensic Operations Manager
King County AFIS Program
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Complexity, Level of Association and Strength of Fingerprint Con-
clusions

By Michele Triplest 1"/
Abstract

False convictions and false incarcerations have pushed the topic of forensic errors into the national
spot light. Friction ridge comparisons (referred to as fingerprints for the remainder of this paper) are
very accurate but errors have occurred, The strength of any conclusion needs to be indicated since
criminal proceedings rely heavily on this type of information. The following paper discusses 2 possi-
ble explanation for errors and offers a mote accurate and transparent approach for arriving at and
reporting results, The proposed approach labels the complexity and demonstrable level of associa-
tion found between two impressions which allow others to mote accurately discetn the strength of a
conclusion.

Keywords: cold cases, fingerprint comparison, false convictions

[1] Michele Triplett is the Dorensic Operation Manager for the King Connty Regional AFIS Program in Seattl,
WA, She is a Certified Latent Print Examiner and holds a BS in Mathematics and Statistical Analysis. She bas
been employed in the friction ridge identification discipline since 19971 and is actively invelved in several commitiees,
organizations and edneational events.

Standard Conclusions
istorically, fingerprint conclusions have Criterion of Inclusions
been reported in a categorical fashion,

such as ‘the impression has been identified to Sufficiency to establish an identification is

John Doe’. Reporting conclusions in this
manner has made conclusions sound conclu-
sive, when in reality they may be strongly sup-
ported with visual data, marginally supported
with visual data, or lack visual data that can be
successfully demonstrated to others (e,
simply the beliefs of the practitioners stating
the conclusion). In order to determine the
strength of the conclusion, the basis behind
the conclusion needs to be assessed. Conclu-
sions have been reported categorically as a
means of simplifying a very intricate process
that was based on a latge number of non-
quantifiable variables. No statistical model has
been able to express the strength of conclu-
sions despite on-going and previous efforts
dating back to the late 1800s.

commonly based on either a practtioner’s
own tolerance level or non-validated adminis-
trative point standards set by an agency. Even
without a validated sufficiency threshold, past
conclusions have seemed faitly reliable; op-
posing conclusions and errors appeared virtu-
ally nonexistent, With the advent of the inter-
net, information sharing has become easier
and the variation in practitioners’ conclusions
has become increasingly more apparent, con-
clusions are not as definitive as once claimed
(Jackson v. Florida, 2015; Stacey, 2005; Possley,
2015).

Evaluating Cortectness of Conclusions
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The lack of a clearly defined criterion for ar-
tiving at conclusions makes it difficult to
evaluate practitioner’s conclusions; without a
standard, there is no means of judging cor-
rectness. ‘This is extremely concerning when
people’s libertes and lives are on the line.
Currently, the only way to assess a conclusion
is to ask for another practitioner’s opinion;
which is mistakenly viewed as a measure of
accuracy. Repeating a conclusion is simply
measuring whether ot not the conclusion is
acceptable to another practitioner; it is not
establishing absolute truth.

Establishing Error Rates

In the last decade, millions of dollars have
been spent on error rate studies. These studies
have assessed the accuracy of practitioner
conclusions when compating manufactared
impressions to ground truth conclusions. The
studies did not compate the error rates of dif-
ferent methods for atriving at conclusions.
The studies indicate that the error rate is low
but perhaps higher than previously assumed.
Some studies assessed the repeatability of
supporting data but they have not evaluated
the acceptability of the support behind the
conclusions (e.g., an accurate conclusion ar-
rived at illogically would have been deter-
mined to be correct for the purposes of the
research),

In casework, the ground truth is never known;
casework conclusions are labeled as errors
when others disagtee with the conclusion.
Since the research studies are assessing a
measurement that does not apply to casework,
the results of these studies may not accurately
represent the error rate for casework. More
importantly, the significant question to attor-
neys, judges, and the person ideatified as de-
positing a fingerprint at a crime scene is not
how often experts make errors, rather which
conclusions, and which methods, are at a
higher risk of etror? In order to reduce error
rates and strengthen forensic conclusions, im-
proved research would compare the etror
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rates of different methods in order to show
which technique produces the best results,

Paradigm Shift

The time has come where it is now essential
to establish standards for atriving at conclu-
sions and clear articulation of the strength of
subsequent conclusions. Doing so will im-
prove conclusions and give the ability to
measure the correctness of conclusions. In-
stead of oversimplifying conclusions as cate-
gorical variables (identification or exclusion),
it is more appropriate to present decisions on
a continuum that expresses the complexity of
a compatison (e.g., Basic, Advanced, Conplex)
and the demonstrable level of association
(such as: overwhelming, marginal, or none).
The complexity of a comparison is important
because it determines the extent of testing
required to ensure the interpretation and
amount of data hold up under a eritical review.
The results of the testing establish the ac-
ceptable level of association, which indicates
the strength of a conclusion (e.g., a complex
comparison does not indicate that 2 conclu-
sion is weak, it indicates that addition quality
assurance measutes are required to establish a
strong conclusion), It is possible to assess the
complexity of an impression in isolation of a
comparison; however, the complexity may
change during a comparison, making a pre-
comparison assessment of an impression un-
necessay.

Measuring information with words instead of
numbers may seem unusual however; this is
common in disciplines that are unquantifiable.
For instance, hospitals rate the condition of
patients on a wording scale (critical, severe,
good, fair, etc.). The words chosen are not
simply at the discretion of the doctor, there
are ctiteria for each category so that every
doctor rates patients the same. For bone frac-
tures, doctors do not simply report that a leg
is broken; they rate the sevetity of the fracture
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in words (compound, haitline, etc). Again,
there are specific definitions for each descrip-
tion to ensute fractures are rated the same.
Additionally, doctors use a 4 stage scale when
teporting the severity of a cancer diagnosis;
with specific definitions for each rating. The
pattern evidence disciplines can and should
follow suit and report more than a conclusion.
Adding information that indicates the strength
of the association found would benefit afl in-
terested parties.

Scientific Critetion: Data and Testing
Over-Confidence

The primary question asked regarding finger-
print compatisons is how much information is
enough to establish an identification. As stat-
ed above, the answer is not 2 quantifiable
number, however, the accepted criterion used
by other non-quantifiable comparative scienc-
es (i.e., based on analytical reasoning) fits well
within the realm of fingerprint compatisons.
The criterion is to ensure conclusions have

sufficient justification within established fun-
damental principles, to hold up against strong

scrutiny. This is often times referred to as
general consensus, although the term gencral
consensus can be misconstrued as meaning
that the majority of people would arrive at the
same conclusion. General consensus is better
defined as the conclusion has been debated
until all doubt has been resolved. Resulting
conclusions may be referred to as inferences
that are supported by data. The strength of an
inference is determined by assessing whether
the support behind the inference satisfies any
doubts presented by others.

Conchausion

Conclusions based on specific criterion and
vetted against rigorous scrutiny will preempt
errors and make conclusions more trustwor-
thy than conclusions based on personal
thresholds and confidence levels. Clear
thresholds also make it possible to judge the
acceptable level of association used to support

Volume 1, Issue 2, December 2015

a conclusion; which helps assess the risk of
error for each conclusion (example to follow).
Measuring acceptance or rejection based on a
criterion is a far more informative approach
than judging conclusions based on the beliefs
of other individuals. Ultimately, utilizing the
following method will provide stronger con-
clusions and allow others to assess the
strength of conclusions.

Simplicity/ Complexity Scale (Basic, Ad-
vanced, Complex)

The following rankings are intentionally min-
imized into three groups for simplicity, The
number of rankings could be expanded but
has been found to be unnecessary because the
minor differences of opinion that may occur
are insignificant to the end result. 'The criteri-
on listed for each ranking are based on the
prevailing views, i.e. tenprint comparisons are
considered Basic, latent comparisons are con-
sidered Advanced, and comparison based on
highly ambiguous or minimal data are consid-
ered Complex. Comparisons between listed
rankings can be labeled as semi-advanced or
semi-complex.

Those using this method must be trained in
fingerprint comparisons in order to determine
the region and orientation of impressions, Us-
ers must be trained in scientific protocols in
order to understand concepts such as the
amount of adequate testing required. For ex-
ample, scientific conclusions are never based
on one piece of data, such as excluding a per-
son as the source based on the pattern type
alone. Plausible conclusions must be tested
before arriving at a well-supported conclusion.
The testing required for each ranking is based
on standard testing requirements for non-
quantifiable comparative sciences (ensuring
the conclusion holds up to rigorous scrutiny).
Demonstrating the basis behind a conclusion
is required upon any request.

The determination that the conditions for
each ranking are met is not at the discretion of
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the practiioner. Whether or not the condi-
tions are met must hold up under rigorous
scrutiny.

Many who attempt to rank compatisons in
this manner quickly find that this is no differ-
ent from how they have assessed images in
the past. The main difference is that the
weight of a4 conclusion is put in the data, not
in the practitioner’s beliefs or abilities, which
protects against over interpretation and errots.

L If  There is sufficient data to establish, not
presume, the region and otientation;
and;

The data being interpreted consists of
clear Galton points, spatial relationship,
and intervening ridges; and

The correlation of data would easily be
interpreted by others; and

The amount of information is large,
not all data needs to be assessed or uti-
lized (such as the majority of tenprint
to tenprint comparisons)

Then The comparison is considered Basic

Testing (such as consultation, corrobo-
ration, supporting documentation, or
testing against strong scrutiny) is net
scientifically required for this simplistic
of conclusions, a practitioner can de-
termine if the data used and the con-
clusion will meet the criteria (ID: Holds
up to strong scrutiny, Exclusion: region,
orientation and a clear target group of
minutiz).

A review of the conclusion is not nec-
essary but may be set by agency policy.

Examples:  Standard  tenprint comparisons,
comparisons with dissimilarides/discrepancies
may be considered Basic when the arca with
the discrepancy is not needed to perform a
comparison and arrive at a conclusion (the

Volume 1, Issue 2, December 2015

appearance of differences/discrepancies may
exist but the reason unknown. Differ-
ences/discrepancies do not necessarily indi-
cate a comparison overall is advanced, com-
plex, ot that an identification is not warranted).

Latent print comparisons whesre the region
and orientation are known and the features
are very clear and large (more data than neces-
sary) are considered Basz,

IL If There is insufficient data to establish,
not presume, the region and otienta-
tion (making the search more difficult);
or

Ancillary features (scats, creases, incipi-
ent ridges) are being interpreted; or

‘The interpretation of data has slight
ambiguity (may not initially be inter-
preted the same by others); however,
the interpretation of data can easily be
demonstrated to the satisfaction of
othets

Then 'The compatison is considered Ad-
vanced

Testing (such as consultation, corrobo-
ration, supporting documentation, or
testing against strong scrutiny) is op-
tional but recommended (since the in-
terpretation of data can easily be
demonstrated); a practioner can de-
termine if the data used and the con-
clusion will meet the criteria (ID: Holds
up to strong scrutiny, Inconclusive; No
consistency found, Exclusion: region,
orientation and a clear target group of
minutia or multiple target areas if am-

biguity is present).

A review of the conclusion is not nec-
essary but may be set by agency policy
to ensure appropriate testing.
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Excamples:  Standard  latent  comparisons,
known impressions deposited: with extreme
deposition pressure, twisting or smeating,
complete tonal reversals, the use of creases, or
relying on mostly ancillary features.

IIL If The interpretation of data {Galton or
ancillary features) has predominant
ambiguity (the interpretation of data is
questionable making it difficult to
demonstrate to the satisfaction of oth-
ers); or

The correlation of data is extremely
limited (making it necessary to use rari-
ty, ridge shapes, edges, potes, or fea-

tures in simultaneous impressions)

Then ‘The comparison is considered
Complex

Volume 1, Issue 2, December 2015

Testing (such as consultation, cotrobo-
ration, supporting documentation, or
testing against strong scrutiny to estab-
lish a consensus conclusion) is required
to arrive at a conclusion that is well
supported and tested under intense
scrutiny,

A review is essential to ensure the ap-
propriate amount of testing was per-
formed.

Excamples: Tonal shifts, relying on highly am-
biguous data (SCRO, Mayfield, Daoud). Noz:
Complexity is distinguished from difficulty in
that difficulty level is based on a person’s abil-
ity while complexity is based on the data in
the impressions (either the unknown or
known).
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Below are examples of Basic Comparisons. The region and orientation are easily determined. The
conclusion can be determined with the use of clear Galton points, their spatial relationship and the
number of intervening ridges. The amount of information is abundant and not all data needs to be
utilized (CLPEX.com fig’s 36, 32, 40) (CLPEX, 2015). Conclusions from Basic Compatisons are
very reliable.

The following example may be at the high end of Basic or Semi-Advanced. The region and otienta-
tion can be presumed. The conclusion can be determined with the use of Galton points, their spatial
relationship and the number of intervening ridges. The amount of information is large and not all
data needs to be assessed (FBI fingetprint image).

The comparison below may be considered Advanced since the region and orientation ate not stand-

ard. However, the features within the image ate clear and plentiful (CLPEX.com fig 68) (CLPEX,
2015).
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The comparisons below fall into the category of Complex because the features within the unknown
impressions are ambiguous, the interpretation of data may not be successfully demonstrated to oth-
ers (CLPEX.com fig 95, Mayfield fingerprint comparison) (CLPEX, 2015; Saks & Kochler, 2005).
Testing the interpretation of data for acceptability is essential to establish the appropriate conclusion.

The complexity of a comparison is based on the amount of ambiguity. The acceptable level of asso-
ciation is based on demonstrability and/or testing performed, which in turn determines the strength
of a conclusion. The chart below can be used as a quick reference guide.
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SIMPLICITY/COMPLEXITY SCALE: QUICK REFERENCE CHART

BASIC

Region and orientation can be determined. Use of Galton features, spatial
relationship and intervening ridges (assessment of other features is not needed).
Not all data needs to be assessed. Testing against scrutiny not required.
ADVANCED

Region and orientation may be questionable. Use of additional features (scars,
creases, incipient ridges) or additional aspects (clarity, slight ambiguity of features).
Not all data needs to be assessed. The use of ancillary features may be considered
at the high end of Advanced. Testing against scrutiny recommended.

COMPLEX

Galton features are predominantly ambiguous. May include the use of edges,
pores, or simultaneous impressions due to limited correlation of Galton features.
Testing against scrutiny required.

Level of Association Continuum

It may seem reasonable to assume that erroncous identifications are more likely to occur as the level
of association decreases (close non-matches; the gray ranges in the level of association continuum);
however, this is not the case. Rescarch into past identification ertors demonstrates that misinterpre-
tation of ambiguous data and reliance on reproducibility as the test for acceptability are the primary
causes of errors. Past errors were found and acceptable associations established by testing the con-
clusion to ensure the interpretation of data holds up against strong scrutiny, ensuring the basis for

the conclusion can be demonstrated to the satisfaction of others (i.e., general consensus) (Stacey,
2005; CBS Interactive, 2012).
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No association
found

No comparison

. Region and

Impression was orientation

identified to cannot be

anothersource determined;
wide-range
search did not
resultina
conclusion

EK@s ION

No association

Features are
inconsistent
when region
and
orientation
can be
determined

*Complexity levels range from light to dark

The level of
association
would be
considered
common

The level of

association

would be

considered

rare but

possible
The level of
association
would be
considered
non-
duplicable;
conclusionis
difficult to
demonstrate

The level of
association
would be
considered
non-
duplicable;
conclusionis
easy to
demonstrate

IDENTIFICATION

The level of
association
would be
considered
implausibleto
replicate;
conclusionis
easily
repeatable

Some agencies state the number of Galton points as an attempt at providing a weight to their con-
clusion. Stating a number of Galton points can be very misleading because it implies a weight that
may not actually exist. A high correlation does not establish the strength of a conclusion because the
assessment of those points may be a misinterpreted, as seen with the Mayfield error and the Dan-
dridge error (Possley, 2015). The level of association is only meaningful if it can be successfully
demonstrated to others, as required by the standard for non-quantifiable sciences.
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Articulation of Conclusions

There is a lot of information that results from
utilizing this method and therefore a variety of
ways to articulate the information. For in-
stance:

The comparison was considered:

a) basic

b) semi-advanced
¢) advanced

d) semi-complex
e) complex

Testing performed:

a) none
b) tested against strong scrutiny for ac-
ceptable interpretation of data

The level of assaciation is;

a) impression associated to another pet-
son, exclusion to this subject by de-
duction

b) overwhelming inconsistency, exclu-
sion to this subject

c) features too broad to determine spe-
cific search area, no consistency found
after a wide-range search

d) the level of association is limited or
matginal, an amount of consistency
seen in others

€) the level of association is high or con-
siderable, not expected in others but
plausible (may be referred to as an in-
vestigative lead of a person of interest)

f) the level of association is persuasive,
difficult to demonstrate but consid-
ered implausible to replicate

Volume 1, Tssue 2, December 2015

g) the level of association is compelling,
easy to demonstrable, and considered
implausible to replicate

h) the level of association is overwhelm-
ing, easily repeatable by other experts,
and considered implausible t repli-
cate

Specific conclusion in casework could be at-
ticulated as one of the following:

“The comparison is Basiz. The level of asso-
ciation is overwhelming and easily repeatable
by others.”

Or, “The comparison is Advanced. The level of
association is compelling, easy to demonstrate,
and considered implausible to replicate.”

Or, “The compatison is Complex:. Testing against
strong serufiny determined the level of associa-
tion to be persuasive and considered implau-
sible to replicate.”

Conclusions presented with this type of in-
formation demonstrate to others that the
practitioner relied on criteria and demonstra-
ble data to protect against over-interpretation
and to ensure conclusions are as solid as hu-
manty possible. This method can also be ben-
eficial to re-assess conclusions arrived at using
a different method. The level of complexity,
the degree of testing petformed, and the level
of association will establish the strength be-
hind any conclusion.

The well-known 2004 FBI erroneous identifi-
cation to Brandon Mayfield can be assessed
under this method. Under this method, the
identification to Mayfield would have been
labeled complex since many of the associa-
tions used were ambiguous. A complex rating
indicates that testing against tigorous scrutiny
is essential. Rigorous scrutiny was not per-
formed by the FBI since the culture at that
time discouraged disagreement among exam-
iners (Stacey, 2005). The Spanish experts ap-
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proached their review in a more critical fash-
ion by questioning the interpretation of data
and the conclusion, If rigorous testing against
scrutiny had occurred within the FBI or by
the external practitioner reviewing the com-
parison for Mayfield, then the conclusion
would have been labeled ‘e’ at best. If it had
been known that it was a complex compari-
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son and rigorous testing against scrutiny had
not been performed, yet a conclusion of ‘f, ‘g’
or ‘h’ was being reported, then others would
clearly see the red flags in this case. Other past
errors can be tested against this system as well.
Fach would show that an identification would
not have held up wunder this standard.
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Abstract

Comparison of forensic fingerprint images for purposes of identification is a complex task that,
despite advances in image processing, still requires highly trained human examinets to achieve
adequate levels of performance. Latent fingerprints collected from ctime scenes ate often noisy,
distorted, and represent only a portion of the total fingerprint area, making matching tasks difficult.
While it is clear that expertise in fingerprint comparison, like other forms of petceptual expettise,
such as face recognition or aircraft identification, depends on perceptual learning processes that lead
to discovery of features and relations that matter in comparing prints, relatively little is known about
the perceptual processes involved in making fingerprint comparisons, and even less is known about
how the visual characteristics of fingerprint pairs relate to comparison difficulty. This project aims to
determine more about the relationship between the measurable, visual dimensions of fingetprint
pairs and the level of comparison difficulty fot human examiners, both experts, and to a lesser
degree, novices. For this research, we assembled a new database of latent fingerprints, matching
tenprints, and close, non-matching tenprints. Using this database, we measured expert examiner
performance and judgments of difficulty and confidence in a vatiety of settings. For the experts, we
developed a number of quantitative measures of image charactetistics and used multiple tegression
techniques to discover predictors of etror as well as perceived difficulty and confidence. A number
of useful predictors emerged, including vatiables related to image quality metrics, such as intensity
and contrast information, as well as measures of information quantity, such as the total fingerprint
area. Also included were configural features that fingerprint experts have noted, such as the presence
and clarity of global features and fingerprint ridges. Within the constraints of the overall low error
rates of experts, a regression model incorporating the derived predictors demonstrated reasonable
success in predicting difficulty for print pairs, as shown both in goodness of fit measures to the
original data set and in a cross validation test. The results indicate the plausibility of using objective
fingerprint image metrics to predict expert performance and subjective assessment of difficulty in
fingerprint comparisons. We also examined the extension of these results to settings that better
approximate real-world fingerprint examiner scenarios, and found our regression model continued
to provide significant explanatoty value fot a substantial portion of the prints. While further research
is necessary, this research provides strong support for the plausible but previously untested
assumption that for expert fingerprint analysis, difficulty (and by extension, error rate) is in
significant part a function of measurable, visual dimensions of print comparison pairs. In addition to
this primary focus, we also conducted several extensions to this research, involving expert
metacognition and novice comparison. These experiments showed that expetts have substantial,
albeit impetfect, subjective knowledge about the difficulty of print pairs. Our experiments also
showed that novices petform very poorly and showed no consistent pattern of feature use. This
research thus also contributes to our understanding of the soutce and extent of human expertise in
latent fingerprint analysis,
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Executive Summary

‘There has been a longstanding belief in the scientific validity of fingerprint evidence, based both on
the apparent permanence and uniqueness of individual fingerprints and on the experience-based
claims of trained fingerprint examiners. In the past, fingerprint evidence, in the hands of an
experienced examiner appropriately applying the methods of the field, was often claimed to be
“infallible” or to have a “zero error rate” (Cole, 2005; Mnookin 2008b). Yet systematic scientific
study of the accuracy of fingerprint evidence is a rather late development, still very much in
proggess. The traditional claim of infallibility for fingerprint identification has been brought to the
spotlight and questioned in light of high-profile cases in which ettors have been discovered. While it
is likely that well-trained, experienced examiners are highly accurate when making positive
identifications, it is also clear that errors still occur. Recently, with the National Academy of Sciences
(2009) inquiry into forensic science, new research has begun to emerge. The available data now
suggest a low level of erroneous match determination by experts under expetimental conditions and
a higher rate for erroneous exclusion determinations (e.g., Ulery, Hicklin, Buscaglia, & Roberts,
2011; Tangen, Thompson, & McCarthy, 2011).

At present, however, fingerprint identification is a strikingly subjective process (e.g., NIST 2012,
chapter 3). There are not validated, objective metrics for any meaningful step in the comparison
process, from the determination of whether there is sufficient information to wartant a comparison
to the final judgment of match or non-match (e.g.,Mnookin, 2010). Not only are these judgments
and conclusions subjective, but at present, there is no method by which the relative simplicity or
difficulty of a print pair can be determined. While examiners may, based on their experience, have a
view about the telative ease or difficulty of a comparison, whether these subjective judgments are
watranted has not been known. The main goal of the project was therefore to identify and quantify
fingerprint image features that are predictive of identification difficulty and accuracy. A quantitative
way of assessing {ingetptint image quality and comparison difficulty would be an extremely useful
development. First and foremost, objective metrics for measuting difficulty create the possibility of
associating etror rates with the level of difficulty. Tt is a matter of common sense to recognize that if
some print comparisons are unusually hard, examiners will therefore be more prone to make
possible mistakes in their analysis; conversely, easy compatisons would be expected to produce
fewer errors than hard ones. But comtmon sense or not, prior to this research, no reseatrch focused
on examining this issue, or attempting to look at the relationship between error rate and

difficulty This project provides foundational steps toward the possibility of associating error rates
with difficulty. An objective metric of difficulty has other benefits as well. Such a metric can be used
to alert examiners when additional care is warranted (i.e., for a particulatly difficult comparison), to
caution examiners who are inclined to label 2 print pair as inconclusive that further examination
might be prudent, and to create a set of fingerprint images with objective difficulty ratings that can
be used for training examiners.

In addition to creating a fingerprint image quality metric, the project had several other objectives: (1)
to create a realistic fingerprint image database with known ground truth (i.e., true matching prints
and close non-matches); (2) to add to the rather modest scientific literature investigating fingerptint
expertise; that is, to assess objectively expert performance both in terms of accuracy in fingerprint
identification and in terms of the image characteristics that related to performance; (3) to examine
the relationship between objective expert petformance and subjective assessments of difficulty and
confidence, to evaluate experts’ metacognitive abilites vis-a-vis the compatisons they make; (4) to
compare the use of visual information by expetts in their fingerprint analysis to the use made by
novices.
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‘The report is roughly divided into two sections. In the first patt, we identify and describe the
computations for several iage features that we hypothesized might correlate with identification
accuracy. The features were a mixture of image properties such as contrast and brightness levels,
traditional (i.c., Level 1, T1, and T1I) fingerprint features such as visibility of deltas and clarity of
tidges, and relational features that applied to the pair of prints in a comparison. The final point is
important since a comparison does not depend only on the quality of the latent, but also on the
shared information between it and the known ptint.

The fingerprint images that were used were latent prints collected from volunteers. Each volunteer
left several impressions on a variety of glass objects. Practicing fingetprint examiners verified that
the impressions we collected were realistic exemplats of the kinds of images that could be found in
forensic settings. Corresponding known prints were also collected from each individual, providing a
set of known matching prints. The latent prints were submitted to an AFIS system and close, non-
matching prints were selected for each of the collected latents. The final print database contained
over 500 pairs of matching and 500 pairs of non-matching prints.

In the second section, we desctibe three behavioral studies in which we measured expert examiner
and novice performance on a subset of the database. In Experiment 1, expert examinets made timed
comparison judgments for print pairs via an online interface that we designed for this purpose.
Examiners were shown a pair of prints and made an identification ot exclusion judgment and
provided difficulty and confidence ratings for each such comparison. We collected data from 56
examiners at a forensic conference. Examiner accuracy was high: there were 200 errors made out of
2292 total comparisons (overall accuracy of 91%) with more false negative or incotrect exclusions
(14%) than false positives or incorrect identifications (3.2%). Difficulty and confidence ratings were
highly cotrelated with accuracy, indicating that experts wete often able to identify which
comparisons were difficult or likely to be error-prone. We fit a regression model to the accuracy data
to predict examiner petformance from image featutes. We identified several features that were
predictive of accuracy, including the ratio of the image areas of the latent and known print, the
combined reliability of ridge information in both images, the variability of contrast across small
regions of both images, and the visibility of deltas in the latent print. The model was also faitly
successful in predicting the accuracy on a held-out set of fingerprints that were not used in the
regression (R%qg = 0.64). A separate, classification analysis was able to identify print pairs for which
at least one examinet made a mistake with a 75% (15/20) accuracy.

Expetiment 2 sought to compare expert performance with that of novices. Naive patticipants with
no fingerptint examination training made fingerprint compatisons in an interface we designed. Not
surprisingly, they performed far below expetts, indeed approximately at chance. For a second group
of subjects, we showed a brief video that highlighted vatious fingerprint features that could be used
in making compatisons such as minntiae. Participants who viewed the video only showed a mild
improvement in performance. However, thete were noticeable changes in their biases to make an
identification; in particular, trained participants seemed more hesitant to label a fingerprint pair as
coming from the same source, perhaps because the training video emphasized the cost of making an
incorrect identification and made the difficulty of fingerprint examination mote apparent. We fit the
novice data to the same regression model from Experiment 1. We found that untrained novices
relied on different features than experts and that some features that experts used had the opposite
effect on novice performance. Trained novices had the weight given to certain features shifted closer
to those of experts, indicating that with training novices may learn which image information is
relevant for identification, while learning to ignore irrelevant features.

Experiment 3 served as an extension and validation of Experiment 1. We used the data from
Experiment 1 to make performance predictions for a new subset of fingerprints from the database.
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We also designed a new web interface that incorporated many of the image processing tools that are
typically available to experts. For example, website users could reverse the contrast of the images,
zoom in and out, mark winntiae, rotate the image, and increase or decrease brightness and contrast.
In addition, we gave examiners unlimited time for each compatison. We recruited a new set of 34
expert examiners and allowed them to perform the expetiment on their own time. Performance was
slightly higher than in Experiment 1, with 10% incotrect exclusions and 0.25% incorrect
identifications. Fitting a regression model identified many of the same predictors as in Experiment 1.
Using the model from Experiment 1 to predict performance for this set of prints was qualitatively
successful for comparisons that were not labeled inconclusive by any examiners, but petrformed
pootly for those that were. Further work needs to be done to incotporate image processing tool use
into the regression model and to account for performance on comparisons that are labeled
inconclusive.

We have taken several foundational steps in this project. First, and most importantly, we have
successfully demonstrated that there are image features that can be quantified and used to predict
examiner performance. While we do not claim our list to be complete or exhaustive, this research is
a vital first step in proving that such features can be found and provides a useful guide for future
tescarch. In addition, these expetiments provide persuasive evidence that thete is a meaningful and
important correlation between compatison difficulty and error rate. Errors were not distributed
randomly across our exemplars, but rather, significantly clustered, revealing that difficulty is, to a
significant extent, a function of visual aspects of the specific compatison. This recognition also
provides evidence that it is not especially helpful to seek a field-wide “error rate” for latent
fingerprint identification. Instead, as our scientific knowledge of fingerprint identification continues
to progress, it will be more useful to seek error rates for diffetent categories of comparisons, based
on objective difficulty level.

Second, we have provided useful evidence for and quantification of examiner expertise, both in
controlled (Experiment 1) and mote realistic (Experiment 3) settings. This has also allowed us to
examine inter-rater reliability and metacognitive judgments (i.e., whether examiners are aware which
prints are actually difficult) and to contrast performance with novices (Experiment 2). Furthermore,
sitnilarity in examiner performance between Expetiments 1 and 3 suggests that one can study
examiner expertise without needing to perfectly replicate work conditions and still get a useful
estimate of performance. This concern has previously limited research, and the comparative
experiments in this study provide valuable information for future researchers to consider when
engaging in study design. Third, we found preliminary evidence that even a small amount of training
can adjust novice petformance. This suggests that with more extensive bursts of training we can
examine, in a controlled manner, the process by which an examiner becomes an expert. This will
allow for various interventions in the training process, allowing for more efficient and automated
training techniques. Fourth, we have constructed an independent fingerprint database, with ground-
trath and difficulty ratings that can be used for future studies or for examiner training, In addition,
we have created several web-deliverable tools that can also be used for evaluation or training that
replicate many of the image processing features available to examiners.

Beyond the scientific findings, there are important aspects of the research that can impact policy. A
more sophisticated understanding of the relationship between error rate and difficulty is, or should
be, important for the courts in weighing fingerprint evidence. Coutts are instructed, when assessing
expert evidence, to focus on the “task at hand”, and this rescarch helps to show that fingerprint
examination may vary in difficulty in ways that may be relevant to its evaluation as evidence
(Daubett vs. Merrell Dow Pharmaceuticals, 1993; Kumho Tire Co. vs. Carmichael, 1999). More
nuanced assessments of fingerprint task difficulty might, for example, affect how a judge
understands admissibility of that specific conclusion, or what degree of certainty the expert will be
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allowed to express, or it might appropriately impact the weight given to a specific match conclusion
by the fact-finder (Faigman, Blumenthal, Cheng, Mnookin, Murphy & Sanders, 2012).

The implications of these findings go beyond the coutt; they provide vital insights that can
considerably enhance the procedures used in forensic laboratoties. For example, similar to medical
triage, the need for different procedures and checks can be made to fit the difficulty of the
compatison. The understanding of what makes some compatisons more difficult than others also
has implications for the selection and training of fingerptint examiners. During selection,
benchmarks and skill sets can be set as ctitetia to ensure candidates have the acquired the necessary
cognitive abilities needed to perform their job adequately. In addition, in evaluating the significance
of errors for trainees, better information about difficulty level will be of great assistance. Trainees
who make mistakes on simpler stimuli can be distinguished from those whose etrots occur only on
more difficult materials; for evaluating performance, all etrors are not — and should not be treated as
— equal.

While further research is clearly necessary to build on these results, this research provides significant
steps forward for helping to establish that error rates ate related to dlfﬁculty, for beginning to
provide evidence for what visual dimensions of ﬁngerprmt comparison pairs ate associated with
difficulty; and for helping to tease out both examiner’s metacognitive abilities and the substantial
degree of examiner expertise in this domain.
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I. Introduction

Thete has been a longstanding belief in the scientific validity of fingerprint evidence, based both on
the apparent petmanence and uniqueness of individual fingerprints and on the experience-based
claims of trained fingerprint examiners. In the past, fingerprint evidence, in the hands of an
experienced examiner appropriately applying the methods of the field, was often claimed to be
“infallible” or to have a “zero error rate” (Cole, 2005; Mnookin 2008b). Yet systematic scientific
study of the accuracy of fingerprint evidence is a rather late development, still very much in
progress. The traditional claim of infallibility for fingerprint identification has been brought to the
spotlight and questioned in light of high-profile cases in which errors have been discovered. While it
is likely that well-trained, experienced examiners are highly accurate when making positive
tdentifications, it is also clear that errors still occur. Recently, with the National Academy of Sciences
(2009) inquiry into forensic science, new research has begun to emerge. The available data now
suggest a low level of erroneous match determination by experts under expesimental conditions and
a higher rate for erroncous exclusion determinations {e.g., Ulety, Hicklin, Buscaglia, & Roberts,
2011; Tangen, Thompson, & McCarthy, 2011).

Contrary to popular belief and its depiction on many television shows, fingerprint identification —
matching a fingerprint from a crime scene to one on file — is not a fully automated process. While
algorithms can compare known prints (fingerprints collected in controlled conditions such as in a
police station where the fingerprint images are clear) with high accuracy, identifying latent prints
(those found at a crime scene) falls to individual fingerptint examinets who are extensively trained
(Vokey, Tangen, & Cole, 2009). However, the nature and extent of examiner expettise has only
recently come under scientific scrutiny (e.g., Busey & Parada, 2010; Busey & Vanderkolk, 2005; Drot
& Chatlton, 2006; Dror, Chatlton, & Péron, 2006; Drot, Champod, Langenburg, Charlton, Funt, &
Rosenthal, 2011; Tangen, Thompson, & McCatthy, 2011; Ulery, Hicklin, Buscaglia, & Roberts,
2011). While several proficiency tests have been used to evaluate expertise, many may have used an
ovetly limited number of prints; this may have led to inaccurate estimates of examiner performance
because of idiosyneratic fingerprint properties that made a particular identification easy or difficult
(Cole, 2006, 2008; Vokey, Tangen, & Cole, 2009).

Mistakes in fingerprint matching are costly and can put lives and livelihoods at risk. Errots in
fingerprint matching are of two types that have different implications. A false negative, whete a
matching pair is labeled as non-matching, could, in a ctiminal proceeding, allow a guilty suspect to
be set free. A false positive, where a non-matching pair is labeled as a match, could lead to, in 2
ctiminal proceeding, the conviction of an innocent person. Existing data suggest that fingerprint
expetts ert more on the side of false negatives (about 8% of total judgments made on a match/non-
match task for fingerprint pairs) than false positives (about 0.1%) (Langenberg, 2009; Tangen,
‘Thompson, & McCarthy, 2011; Ulery, Hicklin, Buscaglia, & Roberts, 2011). Experts perhaps tend to
incorporate the presumption of innocence, erring on the side that would free the guilty rather than
convict the innocent, although false positive rates are not zero.

The practical importance of understanding when and why fingerprint comparison errors occur is
likely to increase as technology advances. Current Automated Fingerprint Identification Systems
(AF1ISs) retrieve from a database 2 number of prints associated with known individuals that could be
potential matches for a particular latent. Under typical procedures, the intervention of a human
expert is required for deciding which if any candidates generated by an AFIS comprise a match to a
latent. Candidate matches selected by a propetly functioning AFIS should often appear similar to the
latent entered into the system, a fact that likely increases the potential for human error. Tmagine, by
way of contrast, a situation in which an examiner is asked to compare a latent print to 2 known print
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of a patticular suspect in a criminal case. Assuming the two ptints are not from the same individual,
it would be a remarkable coincidence if the prints wete highly similar. Use of an AFTS has high value
in extracting candidates from a database, but it puts the examiner in the position of routinely
needing to distinguish actual matches from close (highly similar) non-matches. The likelihood of
human error increases with the degree of similarity of the potential candidates extracted by AFIS,
thereby making the compatison process more difficult (Ashworth & Drot, 2000; Vokey, Tangen, &
Cole, 2009). With the increase in size of AFIS databases, the possibility of finding a look-alike non-
match increases, thereby increasing the potental for false positive etrors (Cole, 2005; Dror &
Mnookin, 2010; Dror, Péron, Hind, & Chatlton, 2005).

From a visual information processing perspective, it is interesting and important to determine what
visual characteristics of fingerprints influence the ease and accuracy of comparisons. Ultimately, it
may be possible to evaluate a fingerprint compatison in terms of the quantity and quality of visual
information available (Pulsifer et al., 2013) in order to predict likely error rates and to assess when
thete is insufficient information to watrant any conclusion.

Perceptual Aspects of Fingerprint Expertise

If asked to give reasons for a conclusion in a given comparison, fingerprint examiners will report
significant explicit knowledge relating to certain image features, such as global configurations, ridge
pattetns and minutiae, as these are often explicitly tagged in compatison procedutes. They are also
pointed out during training of examiners. It would be a mistake, however, to infer that the processes
of pattern comparison and the determinants of difficulty are in general available for conscious report
or explicit description. As in many other complex tasks in which learning has led to generative
pattern recognition (the ability to find relevant structure in new instances) and accurate classification,
much of the relevant processing is likely to be at least partly implicit (Chase & Simon, 1975,
Schneider & Shifftin 1997; for a review, see Kellman & Gattigan, 2009).

Like many other tasks in which humans, with practice and experience, attain high levels of expertise,
feature extraction and pattern classification in fingerptint examination involves perceptual learning --
experience-induced changes in the way petceivers pick up information (Gibson, 1969; Kellman,
2002). With extended practice, obsetvers undergo task-specific changes in the information selected —
coming to discover new features and relationships that facilitate classification in that domain.
Evidence supporting this claim comes from increased petrceptual learning when these features are
exaggerated during training (Dror, Stevenage, & Ashworth, 2008). While several studies have
explored the influence of bias and emotional context on fingerprint matching and classification (e.g,,
Dror, Péron, Hind, & Chatlton, 2005; Dror & Charlton, 2006; Dror, Charlton, & Péron, 2006; Drot
& Cole, 2010; Dror & Rosenthal, 2008; Hall & Player, 2008), there has been relatively little work
investigating perceptual aspects of expertise among examiners ot petceptual learning processes that
lead to expertise.

There are also profound changes in fluency: What inidally requites effort, sustained attention, and
high cognitive load comes to be done faster, with substantial parallel processing and reduced
cognitive load (Kellman & Garrigan, 2009). In turn, becoming mote automatic at extracting basic
information frees up resources for observers to discover even mote subtle or complex structural
information (see, e.g., Bryan & Harter, 1899). This iterative cycle of discovery and automaticity
followed by higher-level discovery is believed to play a significant role in attaining the impressive
levels of performance humans can attain in areas such as chess, chemistry, mathematics, and air
traffic control, to name just a few domains (Kellman & Garrigan, 2009; Kellman & Massey, 2013).

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



These considerations motivate the research presented here. The primary goals were to: (1) create a
fingerprint database with ground-truth (true matches) information and sufficiently difficult
compatison to use as a testing base for futute experiments that evaluate expert performance, (2)
measure expert examiner performance on a variety of prints including difficulty comparisons, (3)
measure novice performance to create a basis of comparison for expert skill, and (4) create a
predictive framewotk by which one could assign an appropriate level of confidence in expert
decisions derived from an objective assessment of charactetistics of the pait of images involved in a
particular fingerprint comparison. These goals are interconnected. Examiner performance levels
(etror rates) are likely to depend on the complexity and difficulty of the comparison: as compatisons
get more difficult, errors are more likely to occur. Hence, the characterization and prediction of
error rates should relate to the perceived difficulty of the comparison. Notwithstanding this
relationship, no previous research on fingerprint identification has attempted to generate objective
models for the assessment of perceived fingerprint compazison difficulty. Note that we use the
teem comparison difficulty advisedly. One of the insights guiding our research was that the right
question 1s not merely whether a patticular print is ‘easy’ or ‘difficult,” cleat or unclear, rich in
information or less so. Rather, the right question is the difficulty of a given compatison. While
latents may vary in quality more than tenprints, and thus may be the primary driver of difficulty, the
specific compatison will also be relevant to determining difficulty. (T see the point most clearly,
consider: a low quality print might nonetheless be part of an easy compatison when the tenprint is
of a different pattern type. Similarly, a high quality latent might be part of a difficulty comparison
when it bears an unusually high degree of similarity to the tenprint to which it is being compared.)

Several studies have atternpted to quantify expert performance. Tangen, Thompson, and McCarthy
(2011) generated a testing set of 36 simulated latent prints from the Forensic Informatics Biometric
Repository. Twelve were paired with a cotresponding known print match, 12 were paired with a
randomly selected, non-matching print from the same database, and 12 wete paired with similar
prints found by submitting the latent ptints to the Australian National AFIS, This resulted in a
testing set in which the ground truth was known, i.e., for each latent print there was a
corresponding, cotrectly matching known print. Thirty-seven experts and 37 novices made similarity
ratings on a scale of 1 (different) to 12 (same). Judgments of “inconclusive” were not allowed. Only
accuracy information was computed from the rating scale. Performance in the dissimilar and similar
non-matching conditions was highest for experts, at 100% and 99.32% tespectively. Performance
was lower when the latent and known prints matched: 92.12%, indicating that experts were more
likely to “free the guilty” than “convict the innocent”, although both kinds of errors were made.
Novice performance was markedly lower than experts’. Their accuracy was best in the match and
dissimilar conditions, with accuracies of 74.55% and 77.03% tespectively, and worst in the similar
non-match condition, with an accuracy of 44.82%. Similar performance in experts between similar
and dissimilar non-matches may teflect the tesults of training that is absent in novices.

Despite the interesting findings, and the latge quantity of test images and examiners, several
impottant questions remain unaddressed by the Tangen et al (2011) study. While the fingerprints
were collected in a realistic manner by having individuals grasp objects, it is unknown whether the
set of prints is sufficiently representative. As with proficiency tests, perhaps this set of prints was
patticularly easy or difficult if they did not, for example, capture a sufficient variety of smudges and
distortions that might occur. The prints were generated by having individuals grasp objects or push
open a door; these kinds of manipulations may have yielded a dispropottionate amount of relatively
clean fingerprints with little distortion. An expert (one of the authots) determined that all of the
prints used in the study had sufficient information to make a judgment (i.e., would not be judged as
“inconclusive”), but (through no fault of the authors, given the lack of objective metrics available)
there was not any other way to determine difficulty. Importantly, one would like to be able to
somehow assess the difficulty of fingerptint comparisons, to be able to determine when a
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compatison should be easy and when it should be difficult and could lead to an increased etror rate.
For example, measuring novice petformance only on matches and dissimilar non-matches would
lead one to incortectly estimate their average accuracy at comparing ptints to be approximately 75%.
The similar non-match condition in which accuracy is at chance is ctitical in demonstrating the
difference between expests and novices. Without being able to quantify the degree of dissimilarity
(difficulty of comparison) in the similar non-match condition, one can only say that expert
performance is near perfect for this particular set of comparisons.

Other studies, using different fingerprint databases, have found novice accuracy to be closer to 85%
{Vokey, Tangen, & Cole, 2009, Experiment 2). Discrepancy in accuracy estimates could be due to
variability in the kinds of prints used for the study or the kinds of image manipulation tools (e.g.,
rotation of one of the images) available to participants. Without a quantitative measure of the
propettics of a fingerprint image that make a comparison difficult or easy, comparing accuracy rates
actoss heterogeneous databases would provide little information about true ability, since the prints
used could be substantially varied in difficulty.’

Such considerations naturally lead to the question of what features of the images make a particular
comparison difficult or easy. For example, if many experts made ertors in the match condition on
the same fingerprints, it would be useful to know what features of those fingerprint images led to
the errors. Identifying objective image features that correlate with accuracy would allow for
predictions of comparison difficulty and could be used to tag print pairs that require additional
sctutiny because they are more likely to be erroneously classified.

Ulery, Hicklin, Buscaglia, and Roberts (2011) have made an impozrtant first step toward addressing
these issues. They created a large dataset of 744 print paits including subjectively rated “low quality”
latents that were rated as representative of those encountered in regular casework. In addition, the
overall difficulty of comparisons was rated to be similar to casework by a majotity of participants. A
slightly greater proportion of images used in the study was rated as poor quality according to the
NIST Fingerprint Image Quality Metric INFIQ) compared to examples from AFIS. Non-matching
pairs were selected by submitting latent pairs to an Integrated AFIS. 169 examinets participated,
each evaluating approximately 100 randomly selected print paits. Because the testing sets were
generated randomly, there was large variability in the number of examiners that evaluated cach pair.
Hxaminers were given the option to label a comparison as “inconclusive”. Among 4,985 non-match
trials, there were 6 false positives (accuracy: 99.89%), each on a different comparison, made by 5
unique examiners, There were 611 misses (matches evaluated as non-matching) out of 8,189
compatisons (accuracy: 92.54%). These results were very similar to identification accuracy amongst
experts in Tangen, Thompson, and McCarthy, (2009). Performance correlated with years of
experience and certification suggesting that some variability is due to individual differences among
experts (Ulery et al., 2011). Participants were also asked whether there was enough information in
each latent image to make an identification, to make an exclusion (less information may be needed
for exclusions since only one non-matching featute is needed between a latent and known print),
whether an identification is possible conditional on the content of the known print, or whether there
was not enough information in the latent to make a compatrison (in which case the print was not
shown in a comparison). For matching pairs, only 48% of latents were unanimously agreed to
contain enough information to make an identification; agreement was 33% for non-matching pairs.
One source of variability in performance is therefore individual differences among expert examiners.
Some of this variability may be due to different amounts of expettise, since dutation and type of

! Of course, the visual qualities that make comparisons easier or more difficult for novices may or may not bear much
resembiance to the characteristics that make prints difficult for experts. One of the experiments discussed below
{Experiment 2) has relevance to this point.
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training correlate with performance. Other differences may be due to lack of a standard for
determining what counts as sufficient information. Without some way of measuring information
content and quality, it is impossible to know what makes a comparison difficult, which comparisons
actually are difficult (without relying on subjective ratings), and whether an examiner is cotrect in
determining that there is sufficient or insufficient information to make a compatison. Similarly,
Langenberg (2009) had six examiners complete 120 comparisons in two phases. He investigated
overall accuracy, verification accuracy, consistency within and across examiners, as well as type
of conclusion (identification, exclusion, inconclusive, or no value). The resulting performance
data are interesting and informative. However, this study did not quantify what fearures of the
images may have resulted in errors or disagreement among examiners. While it is important to
know what the average accuracy of an average examiner may be on an average fingerprint, that
was not a primary goal of our project. Rather, our effort was to identify, using objective
measures, whether a particular comparison is easy or difficult and whether it is likely or not to
result in an error.

A recent NIJ report has made a valuable early attempt at measuting fingetprint quality and
information content (Neumann, Champod, Yoo, Genessay, & Langenburg, 2013). Almost 150
examiners evaluated 15 fingerprint pairs for information “sufficiency”. Examiners who patticipated
in the study were asked to classify, using a web-based tool, regions of the images that had low,
medium, or high quality. They were also asked to mark, by hand, as many minutiae as they could
find and to classify them. In addition, they were asked to make several subjective assessments of
quality regarding fingerprint properties such as amount of distottion or degradation. The authors
examined relationships between marked features (minutiae), perceived quality metrics, and the
conclusions reached by examiners. Interestingly, there was a great deal of variation across examiners
in terms of assessment of finger ridge quality, degradation and distortion, and the number of
minutiae. The researchers were unable to find a quantitative measure common to all examiners that
predicted whether there was sufficient information to reach a conclusion. Other features, including
demogtraphic factors, seemed to have little effect. This report underscores the problem that the
features examiners selected were ultimately subjective, and therefore dependent on the idiosyncrasies
of the specific examiners making the comparisons. That is, different examiners would produce
different features for the exact same fingerprint image. This tesearch, while interested in questions
related to ours, highlights the importance of our project, in which we strove to identify objective
(.., observer-independent) image features that were predictive of accuracy. The features we
identified can be computed automatically for any fingerprint pair and involve neither a laborious and
subjective period of minutiae marking and classification, nor the concetns that arise from any
subjective process about inter-examiner consistency and reliability.

Fingerprint Features in the Standard Taxonomy

The fist step in latent print examination is often manual preprocessing. For example, the region of
the image that contains the fingerprint could be selected from the background and oriented upright.
If a fingerprint is to be submitted to a database for automated comparison, key features need to be
identified and labeled. Automated searches are then carried out by softwate that finds fingerprints
on file with similar spatial relationships among labeled features in the submitted fingerprint. This is
the only part of the examination and compatison process that is automated. The software returns a
list of potential matches, some of which will likely be quickly excluded. Some will likely be closer

non-matches or a match, and these require further scrutiny by an examiner.

Whether examiners are provided with potential matches via automated database searches or via
investigative work, they often make their match decisions using the approach: Analysis, Comparison,
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Evaluation, and Verification (Ashbaugh 1999; Mnookin, 2008a). The examiner first inspects the two
ptints individually (analysis), then compares them relative to each other, looking for both similarities
and differences (comparison). They then evaluate those similatities and differences to arrive at a
decision about whether the prints match or not. In the final step, a second examinet independently
validates the comparison. Mnookin points out that thete is no formalized process for any of these
steps. There is no method or metric for specification of which features should be used for
comparison, not any general measure for what counts as sufficient information to make a decision.
Examiners rely on their experience and training rather than formal methods or quantified rubrics for
making a decision. Despite the lack of a formal, standardized procedure, attempts have been made
to formally describe and classify the kinds of features that might be found in a fingerprint.

‘Three types of features are commonly used to desctibe the information used for fingerprint
comparison (for a complete discussion, see Maltoni, Maio, Jain, & Prabhakat, 2009). Level I features
are global descriptors of ridge flow easily seen with the naked eye. The pattern in the central region
(the “core”) of the fingerprint can be classified as one of several common types: left- and rightward
loops, whotls, tented-arches and arches. Deltas are triangular patterns that often occur on the sides
of loops and whoils. A leftward loop and a delta are indicated by the yellow and green boxes
respectively in Figure 1. Level I featutes ate too common to be sufficient for identification, but they
can be used for exclusion purposes as well as to guide inspection of the more detailed Level TT and
Level 11T features.

Level II features include mznutiae such as ridge bifurcations and ridge endings. Level IT features are
found where fingerprint ridges and valleys split or end. Minutiae are highlighted in red circles in
Figure 1. The uniqueness of fingerprints for identification putposes is largely due to the high
variability in the existence and the relative positions of these features across fingers and individuals.
Scarring, which occurs naturally with age and wear, can also add unique ridge patterns to a
fingerprint. However, while scars can be used to compare the fingerprint found at a critne scene to
that of a suspect in custody, they may not always exist in fingerprints on file that may predate the
markings.

Level TIT features are the smallest fingerprint features used by some examiners for compatison.
These include the positions of sweat pores and ridge thickness. Pores are indicated in light blue
circles in Figure 1. The visibility of Level III features depends on the quality of the prints and
examiners do not uniformly make use of them for comparison putposes.

Training may lead to an increase in the number of detailed local charactetistics (minniae) noticed by
participants in a given print (Schiffer & Champod, 2007). With brief presentation times (under a
second), when a viewer may not have enough time to compate many local features across two
images in a matching task, experts utilized configural fingerptint information mote efficiently than
novices, focused on different information, and/or more effectively filtered out irrelevant
information (Busey & Vanderkolk, 2005). What that information was, however, was not a primary
focus of the research, Marcon (2009) had naive observers rate “high quality” known prints and “low
quality” latents for distinctiveness. Performance for categotizing paits of ptints as coming from the
same source or a different source was higher for high-quality and high-distinctiveness images. These
results suggest that performance suffers when fingerprint image quality is low, but do little to
determine what makes a print low quality in the first place.
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Figure 1. Depiction of various image features :ommonly identified by expert examiners. Red circles
indicate minutiae (ridge bifurcations or endings); blue circles indicate pores (they appeat as small
white dots along a ridge); the yellow square indicates the delta; the green rectangle indicates the core,
in this case a leftward loop.

Whereas the kinds of visual structures that may match or differ across fingerprints (cote patterns
such as whotls or loops and minutiae) have received some consideration, almost no analysis has been
devoted to characteristics of image quality that may affect the fingerptint comparison task. These
considerations apply mainly, but not exclusively, to latent prints. Intuitively, we would expect that a
partial latent showing a small percentage of the full print, made on a surface unfavorable for
extracting prints, and moved or smudged when the impression was made would ptesent a more
challenging matching problem than a clearer latent of larger area. For known prints, there is also
variability in contrast, smudging, collection of excess media, and so forth that can affect the visual
information available. There may also be relational variables involving the print pait: for example,
comparing two prints of similar contrast may be easier than comparing a high-contrast known print
and a low-contrast latent. Image processing measures extracted from latents and known prints, and
the relations among them, may be useful for predicting the difficulty of a given compatison.

Predictor Variables

What properties of the images in fingerprint pairs are most important and informative in comparing
fingerprints, and therefore most strongly predict matching performance? Although we relied on
regression methods to provide answers to this question, it was important to develop, as inputs to the
regression analyses, a wide variety of possible image characteristics that could be relevant. To
generate such factors, we were guided by visual science, intuition, insights from fingerprint
examiners, and prior work on image processing of fingerprints (e.g., Maltoni, et al., 2009), as well as
the standard taxonomy of levels of pattern information in fingerptints. Some variables intuitively
relate to the quantity of available information; for example, having greater print area available for
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comparison might make compatisons more accurate. However, this view might well be
oversimplified; quality of information might matter as much or more than total ptint size. We
created and adapted several image processing techniques sensitive to smudging, missing tegions,
poot contrast, etc. In short, these algorithms were used to create variables with values for each print
pait that likely relate to the visual information relevant to examiner performance.

As mentioned above, we hypothesized that difficulty would be a function both of the charactetistics
of the individual prints {the latent and the potential match} and also of the characteristics of the pair.
Because known prints are obtained under relatively standardized conditions, they are subject to
significantly less variability than latent prints obtained from crime scenes. Accordingly, we expected
that more of the variability in visual information quality affecting fingerprint comparisons would be
determined by charactetistics of latent prints. An especially poor quality latent might be more
difficult to assess than a higher quality one, all else being equal. However, we also believed that
comparison difficulty would be a function of interaction effects between the latent and the known,
not simply a function of the information quality and quality of each alone. We therefore developed
quantitative measures involving both individual prints and print pairs.

A general description and motivation for the image features we selected or developed is provided
below. Except where noted, we assessed each predictor vatiable for the latent print and the known
print. For many variables, we also detived a variable that expressed an interaction or relationship of
the values for the latent and known print combined (such as the ratio of latent print area to the
known print area, or the Buclidean sum of contrast variability for the latent and known print
combined). Details about the procedures used to derive the measures are described below.

Total Area. This variable was defined as number of pixels in the fingetprint after the fingerprint was
segmented from the background. Although tnachine vision algorithms exist that could have been
used for determining the region of usable print image, those algorithms we examined were not as
good as human segmentation, and different human obsetvers in pilot wotk ptoduced strong
agreement. Accordingly, we segmented fingerprints from their sutrounds by having human
observers designate their boundaries. In general, we expected that latger areas, especially of latent
ptints, would provide more information for making comparisons.

While there are a variety of automated computer algorithms to segment a fingerprint from its
background (Shen & Eshera, 2003), we opted to manually segment the images because, although the
automated methods we tested worked well for most known prints and high quality latent prints, they
failed for many low-quality latent prints. Since many of our latent prints were intentionally low
quality (e.g., low contrast, smeated, etc.), the automated approach was not adequate. Furthermore,
fingerprint technicians often manually specify the region in which a fingerprint is to be found, and
so manually specifying the print region was not a great departure from standard procedures
(observations from Los Angeles Forensics Tab). To calculate Total Fingerprint Area, a graphic user
interface (GUI) was developed in MATLAB that displayed each image, one at a time. T'wo of the
authots segmented all images by clicking and selecting points on the boundaty of the print. A

2 One of the anonymous reviewers of the draft report made the interesting observation that to look at the characteristics
of ‘pairs’ rather than individual prints could be seen to violate the principle of separating the analysis phase from the
comparison phase, of ACE-V a separation which many fingerprint analysts adhere to, and which has been recommended
by some as a method for controlling the risk of bias (Expert Working Group on Human Factoss in Latent Print
Analysis, 2012). It is true that assessing the comparison exemplars in conjunction does not adhere to the principle of a
complete separation of these phases. However, the purpose of this separation is as a mechanism to control cognitive
bias. If 2 metric makes use of automated, objective measures for each print, that obviates the need for separation. To
whatever extent a metsic incorporates subjective dimensions of measurement, the reviewer’s point would indeed have
purchase.
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polygon was fit through the points and the number of pixels within its boundaries was used as a
measure of print area. Since each print was scanned at the same resolution, number of pixels is
proportional to physical area.

Area Ratio. To relate the relative area of a Jatent to a poteritially matching known ptint, we divided
the area of the latent fingerprint by the area of the known print, Typically the known print, obtained
under controlled conditions, presents a more complete image. Thus, Area Ratio relates to the
proportion of known print information potentially available in the latent print. However, for non-
matching prints, the area of the latent may be larger than that of the known print because of
differing finger sizes. Occasionally, even for a matching latent and known print, the latent could be
larger than the known print due fo smeating, The ratio was thetefore not strictly in the range [0,1]
and cannot be considered a true proportion.

Image Intensity. We measured the mean and standard deviation of pixel intensity taking into account
all of the pixels in each fingerprint image (with intensities scaled in the range of [0,255]). The mean
intensity and standard deviation of intensity provide two related but different measures, sensitive to
different image characteristics. Very dark images (low mean intensity) might indicate the presence of
large smudges that produce large, dark areas. Low standard deviation in intensity would make ridges
(transitions from light to dark) difficult to detect.

Block Intensity. The image was divided into 50x50 pixel regions and the average pixel intensity was
computed within each region. The mean of the block intensities is the same as the overall mean
Inrage Intensity. The standard deviation of these regional averages (standard deviation of block intensity),
howevet, can provide additional information about variability in image intensity across the image.
Low vatiability is indicative of many similar areas across the image, but does not provide
information about whether those regions have low or high contrast (ie., an all black image and an
image with 50% white and 50% black pixels, evenly disttibuted across the image, would have low
Block Intensity vatiability). When pixel intensities are not uniformly distributed actoss the image,
vatiability of block intensity is high (i.c., some regions of the image are datker than others). For
latent images, this may indicate the presence of a smudge or wortse contact (lighter impression) in
some regions of the image.

Deviation from Excpecied Average Intensity (DEAI). Intensity, as coded above, may be a useful predictor
variable, but both intuition and pilot work led us to believe that it might not capture some significant
aspects of intensity variations. We therefore developed a separate intensity measure — deviation from
expected average intensity. In an ideal fingerprint image, one might expect approximately half of the
pixels to be white (valleys) and half to be black (ridges). The expected mean intensity would
therefore be half of the range, or 127.5. The absolute deviation of the obsetved average from the
expected average was computed using the following formula:

DEAI = —|mean pixel intensity — 127.5|
Using absolute value hete ensures that deviations from the midpoint of the intensity range in either
ditection are scored as equivalent; the negative sign ensures that the measure increases as the mean
pixel intensity approaches 127.5 (large deviations produce a large negative value of the measure).

Contrast. Michelson contrast was computed for each the segmented fingerprint. Michelson conttast is
defined as:
Maximum Intensity — Minimum Intensity

Maximum Intensity + Minimum Intensity

Contrast =

* Ridges, on average, are thicker than valleys so the expected average would be slightly lower since there would be more
black pixels than white.
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This contrast measure produces a value between 0 (least contrast) and 1 (most) by dividing the
difference of maximum and minimum intensity values by their sum. Michelson contrast is typically
calculated from luminance values. In our images, we calculate Michelson contrast from pixel
intensity values, which is appropriate given that fingerptint images may be displayed on a varicty of
monitors with different Gamma coefficients.

Block Contrast. The preceding measure obtained the Michelson contrast for an entire image. We also
computed contrast for smaller image regions — block conttast — by segmenting the entire image into
50x50 pixel regions. Block Contrast is defined as the mean across the blocks. To illusteate the
difference between overall contrast and block contrast, the Michelson contrast of an entire image
containing all gray pixels, except fot one white and one black pixel, would be 1. Block Contrast,
however, would be very low, since most regions of the image would have 0 contrast. If black and
white pixels were distributed more evenly across the image such that they appeared in each block,
then Block Contrast would be high. High values of the measure may indicate the presence of clear
ridges and valleys in many areas of the fingerprint. A separate but related predictor was the standard
deviation of block contrast across blocks. Small standard deviation values could indicate high
information content throughout the image (Block Contrast close to 1 everywhete) or that the image
was uniformly smudged (Block Contrast close to 0 everywhere).

Ridge Reliabifity. Orientation-sensitive filters were used to detect edges in the fingerprint image. The
relative responses of these filters were then used to identfy “high reliability” regions whete ridge
orientation was uniquely specified. The proportion of high reliability regions was computed,
resulting in an overall reliability score for each print. Ridge Reliability ranged between 0 and 1, with
latger values indicating a greater proportion of print area with well-defined ridge otientation. An
additional, relational predictor was computed by taking the Euclidean sum of the Riédge Refiability for
the latent and known print (Rédge Refiability Sum). Large values of this measure indicate a high
proportion of regions with well-defined ridge orientation in both the latent and known prints.

Fingerprint images were histogram equalized in blocks of 75x75 pixels to 256 gray levels. Local ridge
otientation reliability was then computed for each pixel in each latent and tenprint using the
MATLAB function ridgeorient.m (Kovesi, 2000). ridgeorient.m first computes the pixel intensity
gradient within a 10x10 pixel region centeted on each pixel. For that region, the direction of
maximum change in intensity was identified. The area moment of inertia was then computed about
this direction. This is the minimum moment of inertia, while the perpendicular direction is the
maximum, The ratio of minimum to maximum inertia was computed and subtracted from one. If
the two moments are close to each other, then the gradient in the maximum and perpendicular
directions is similar, meaning that there is little variation in intensity in any direction that region of
the image and it is unlikely to contain an edge. This would yield a ratio close to one, and, when
subtracted from one, a reliability value close to zero. In contrast, a clear edge would produce a large
difference between the minimum and maximum moments of inertia and therefore a small minimum
to maximum ratio. When subtracted from one, it would yield a reliability scote close to one. This
code is available for download (see Kovesi, 2000). The local reliability values at each pixel wete then
averaged across 50x50 pixel regions. Regions in which the average reliability exceeded a threshold of
0.45 were classified as reliable. The proportion of reliable regions in the segmented fingerprint image
was the Ridge Reiabifity measure. This measure is bounded between 0 and 1 and cortesponds to the
proportion of the area of each print that contains reliable ridge otientation information.

Visibility of Cores and Deltas. Earlier we desctibed global configurations - Cores and Deltas — that
provide Level I information to fingerprint exatniners. The fact that ridge flow in fingerprints tends
to follow a circular pattern dictates that there will be some global cote (a whotl, loop, or arch) at or
near the center of each print. Likewise the transitions from global cores, especially loops and whorls,
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to the citcular ridge flow tends to give tise to deltas, triangular configurations (see Figure 1). As
there will be only one core and at most a small number of deltas in any print, these setve as
important reference points in making comparisons (Maltoni, et al., 2009). Unlike all of the other
variables we used, which could take on a continuous range of values, Cores and Deltas are binary
(either present or not).

A MATLAB-based GUI was developed and used by one of the authors to count the number of
deltas present and whether or not the core was visible. Each print was also classified as left loop,
right loop, whorl plain, whotl twin, arch or tented arch (or “unclear” if insufficient information was

available for making a definitive classification). This interface is shown in Figure 2.

B -

How many Deltas are visible (0,1 or 2)? _ - -

Is there a visible Core? r:’gg 3 r'fllLJ

x|
What s the Type of the core? _ -

Figure 2. The interface used for counting deltas, marking the presence or absence of a core,
and labeling the core type.

Relations Among Basic Predictors

To remove effects on regression coefficients of differing scales of various predictors, we
standardized all continuous metrics by subtracting the mean and dividing by the standard deviation.
Standardization made some measures that were strictly non-negative (like Standard Deviation of
Intensity) take on negative values. As is often recommended in using regression methods (e.g., Neter,
Kutner, Wasserman, & Nachtsheim, 1996), we also examined the features for collinearity and found
that several predictors were highly correlated. For example, the mean and standard deviation Inzensity
measutes wete cotrelated (Peatson’s r = -0.77 for latents and -0.44 for known prints). High
cotrelation among predictors is an undesirable feature for regression models (Neter et al. 1996)
because it makes it harder to assess the individual effect of those predictors. If two predictors had a
correlation of greater than 0.5, we removed one of them. After removal, the vatiance inflation
factor, a measure of collineatity, for all continuous metrics was less than 5, indicating that
collinearity was sufficiently reduced (Chatterjee & Price, 1991; Booth, Niccolueci, & Schuster, 1994;
Neter, et al. 1996).

In addition, we included two-way interactions between all predictors that applied to both a latent
and known print. For example, in addition to the Standard Deviation of Block Contrast for the latent and
known print, we included the interaction between the two terms. In addition to .Area Ratio and Ridge
Reliability Sum, these ate relational predictors that encode something about the relative quality of
information in a latent and known print.
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Present Studies

The main goal of the project was to identify and quantify fingerprint image features that are
predictive of identification difficulty and accuracy. Low quality prints recovered from crime scenes
are often distorted, smudged, o contain only partial impressions. Experts may disagree whether the
ptints contain enough information or are of sufficiently good quality to make a determination
(identification ot exclusion / match or non-match judgment) or whether there is not enough
information (i.e., the print is of insufficient quality) to make a judgment. It would be useful to have a
quantitative way of assessing fingerprint image quality and compatison difficulty. Such a metric can
be used to alert examiners when additional care is warranted (L.e., for a particulatly difficult
comparison), to caution examiners who ate inclined to label a print pair as inconclusive that further
examination might be prudent, and to create a set of fingerprint images with objective difficulty
ratings that can be used for training examinets.

If fingerprint compatisons are generally accurate but occasionally not so, characterizing the sources
of difficulty and the quality of information in fingerprint pairs becomes crucial. Ultimately, it may be
possible to evaluate a fingerprint compatison in terms of the quality of visual information available
in order to predict likely error rates in fingerptint comparisons. Such a metric would have great value
in both adding confidence to judgments when print compatisons are uncomplicated in terms of
having high quality visual information, and it would allow appropriate caution in cases that are, from
an objective standpoint of the quality of visual information, more problematic.

In a typical fingerprint evaluation, an expert examiner is given a latent and a known fingerprint pair,
which they evaluate for identity (i.e., whether the two images came from the same finger or not). For
the present study, we created a database of latent prints, matching known prints, and non-matching
prints retrieved from an AFIS database. Comparisons involving prints tetrieved by AFIS resemble
those performed in realistic settings where candidate matches are also generated by AFIS. Since the
system attempts to find similar prints, the comparisons in our study may reveal etrot rates that are
higher than that would occur if the non-matches were randomly selected, but would be more
representative of real-world comparisons.

In all studies reported here, patticipants petformed a two-alternative forced choice task in which
they evaluated whether two fingerprint images came from the same soutce (matched) or from
different sources (did not match). The latent print was not a cropped version of the known print;
rather, the two prints were retrieved in different instances and the task was to determine whether the
same finger created both. Images were presented side-by-side on the computer screen.

In addition to creating a fingerprint image quality metric, the project had several other objectives: (1)
To create a realistic fingerprint image database with known ground truth about each pair (i.e., true
matching prints and relatively close non-matches). (2) To add to the rathet modest, albeit growing
scientific literature investigating fingerprint expertise; that is, to assess objectively expert
petformance in terms of both accuracy in fingerprint identification and the image characteristics that
related to performance. (3) To compare expett performance with novice petformance, and in that
manner quantify the degree of expertise. An additional benefit of studying novices was our ability to
study how performance changes when a group of novices was made familiar with some
characteristic visual features of fingerprints through brief training and to investigate how and to
what extent this training changes cognitive strategies by altering the relative importance assigned to
vatious visual characteristics in fingerprint pairs. Although not an original goal of the project
proposal, this was a natural extension and resulted in an interesting finding.
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We created a database of matching and non-matching fingerprint pairs that were used in all studies
described in this report. The details of the database are described in the following section.
Fingerprints were chosen to be a realistic example of the kinds of prints that are normally found in
evaluation settings. Care was taken to attempt to generate pairs that varied in difficulty. First, this
was important in order to ensure that sufficiently difficult compatisons wete included to try to
simulate difficult comparisons in the real world and potentially generate errors. Second, a range of
difficulty allows for the database to be used in other settings, for example, as a training set from
which examiners can select, easy, medium, and difficult comparisons. We used this database for
sevetal experiments reported below.

In Experiment 1, fingerprint examiners recruited from a forensics conference made match/non-
match comparisons for a subset of print pairs from the database. There were several important
differences between the experiment and typical comparison settings. Normally, examiners have the
choice to label a print pair as “inconclusive”, which means that the examiner deems that there is not
sufficient information available to unambiguously say whether two prints come from the same finger
or not. This creates the possibility of a different kind of error from saying that two non-matching
prints are from the same person (false alarm) or saying that two ptints from the same person are
from different people (miss): incorrectly deeming that there is not enough information to make a
conclusive evaluation when there is in fact sufficient information. In all experiments, we asked
patticipants to ptovide difficulty and confidence ratings for each comparison. While this procedure
is different from the operation of fingerprint analysis in normal forensic settings, it has two
important advantages. Firstly, errors in this forced-choice framewotk likely have a more direct
relationship to fingerprint quality. Second, we were able to examine the relationship between
fingerprint information quality and confidence. This experiment was an impottant first proof-of-
concept to demonstrate that under at least restricted settings, errors could be made. Tf it had turned
out that experts made no mistakes given the constraints of the task, then there would have been
little hope of artificially creating other situations in which etrors could occur. To foreshadow some
of the findings, several features of the fingerprint images were found to cotrelate with performance.

In Experiment 2, we used an overlapping subset of the fingerprints to test performance of novices.
This served as a baseline comparison for examiner expertise. We expected that novices with
absolutely no training would perform very pootly at this task since expertise requires extensive
practice, in a same way that an amateur would have difficulty in classifying birds or determining
whether an x-ray image contained evidence of cancer. However, novice performance seems to vary
greatly depending on the type of study and materials, and can be as high as 75% for matching priats
(e.g. Vokey, Tangen, & Cole, 2009; Tangen et al., 2011). Tt was therefote important to get
petformance measures for this particular set of images. One group of novices provided this
petformance baseline. A second group was shown a brief video that highlighted the kinds of image
features used by experts in fingerprint matching and explaining how one might go about comparing
fingetptints. It would be unreasonable to expect that watching a shott video would drastically
improve performance (otherwise, experts would not need such extensive training); however, the
training video might cause novices to begin to use and be affected by the same information that
expetts use. We hypothesized that we might find that the kinds of features that were important for
accurate performance for experts might receive a greater weighting ot become more important for
novices who watched a short video. For example, if it was pointed out that minntize or ridge flow
could an important factor in determining fingetprint identity, then perhaps measures like Ridge
Reliability would become mote important (meaning that petformance would be higher for prints with
greater values of this predictor) for the task. By compating what predictors correlate with accuracy
between expetts and novices, we can examine differences between the two groups and identify
which features may be most important to focus on.
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Experiment 3 was an extension and validation of Experiment 1 with a different set of experts and an
expanded set of tools in a substantially more realistic setting. Participants had access to a wide range
of image processing tools to manipulate the images in the study, via an interface we built. They had
unlimited time to make their comparisons. They also had the option of indicating that a particular
compatison should have been deemed inconclusive. However, they still had to provide difficulty and
confidence ratings, as well provide a best guess as to whether the prints were a match or non-match.
The prints used in this study were selected based on predictions of difficulty from Experiment 1.
Some of the prints in Experiment 3 were used in Experiment 1 and some wetre new. We expected to
find generally comparable performance in this new group of expetts to those tested in Experiment
1, but we did not know the extent to which the other manipulations (additional time and tools)
would impact performance. If there was no difference in performance, then, moving forward, that
would suggest that findings from experiments using simplified testing materials might be able to be
extrapolated to more realistic settings; if thete wete very substantial performance differences, that
would show that some of the simplifications of the sorts we took dramatically altered performance.
We found a high correlation in accuracy for print paits that were used in both Expetiment 1 and
Experiment 3, although there were some differences. The model was successful in predicting
accuracy for many print pairs in Experiment 3, despite the differences between the two studies.
There were several inconsistencies in predictions, however, particularly for print pairs that were
labeled as inconclusive in Experiment 3. We explote some of the implications of these results and
suggest further analyses and studies.

II. Methods

Database Creation

Fingerprints were collected from 103 individuals. Each individual first used a single finger to
produce a clear, known print using ink as is done in police stations. Then, using the same finger,
they touched a number of surfaces in a variety of ways (with varying pressure, smudges, etc.), to
create a range of latent fingerprint marks that reflect those found in a crime scene. Professional
fingerprint examinets who participated in the study reported that these prints were similar to those
that they encounter in their everyday casework. The latent fingerprints were lifted using powder and
wete scanned at 500 dpi using the FISH system. Tmage dimensions ranged from 826 pixels in height
to 1845 pixels and from 745 pixels in width to 1825 pixels. The latent prints that were created varied
in clarity, contrast, and size. For each individual who contributed to the database, we collected a
total of six prints — one known print and five matching latent ptints. Across individuals we varied
the fingers used. Each scanned fingerprint was oriented vettically and approximately centered.

To create the non-matching pait of prints, we did not want to randomly choose a known and a
latent, as such pairs may be too obviously different. This would make the “non-match” decisions
nearly uniformly easy, and would also, by default, indicate which wete the “matching” paits.
Therefore, we obtained similar, but non-matching known ptints by submitting the latent prints to an
AFTS search. An expert selected from the AFIS list what he deemed as the most similar print. That
enabled us to produce non-matching paits that were relatively similar. The final database consisted
of 1,133 fingerprint images — five latent prints from 103 fingers (515), 103 known prints that
matched (103), and another 515 known ptints for the non-match for each of the latents. Since we
used an AFTS with a database from another countty, it was practically impossible that a match would
be in the database. Furthermore, the expert who selected the most similar print from the AFIS
candidate list verified that each was a similar ptint, but not an actual match.
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Experiment 1 - Experts at Conference

Subjects

Fifty-six fingerprint examiners (18 male, 35 female, three not reported) participated in the study.
Forty participants self-reported as latent print examiners, three as known print examiners, ten as
both, and three did not report. Years of experience were reported between the range of 1 and 25
yeats (Latent: Mean = 9.54, SD = 6.97 ; Ten-Print: Mean = 10.45, SD = 8.07). Twenty-seven
participants reported being IAI (International Association for Identification) certified. 32 reported
that their labs were accredited.

Participants were either directly recruited at the 2011 IAI Educational Conference ot via a flyer sent
out in advance of the conference. As incentive, participants were told they would be entered into a
raffle to win an iPad 2. All participants signed informed consent forms prior to patticipating. As
indicated above, some limited demographic information was collected, but it was stoted separately
from individual participant IDs such that the two could not be linked.

Apparatus

All stimuli were displayed on laptop computers with 17-inch monitors at a resolution of 1024 x 768
pixels. Stimuli were presented using a program accessed online; data were stored on the website’s
server. A screenshot of the program is shown in Figure 3.

Stimuli

Of the 1,133 fingerprint images, 200 latent and known ptint paits were selected and used for the
study; half were a match and half were a close non-match. Individual print metrics were computed
for each image or image pair (see below) and prints were selected to (approximately) uniformly
sample each feature space. Known prints were sampled without replacement, but multiple latent
prints from the same finger were occasionally selected since each latent could be paired with a
different known print image (the match or a close non-match). Print pairs were then grouped into
batches of 20, each containing ten matches and ten non-matches. Latent prints from the same finger
did not appear within the same batch.

Design

A group of experts made match / non-match judgments and provided confidence and difficulty
ratings on a subset of 200 print pairs selected from a database of over a thousand fingerprint images.
Two fingerprint images that were either from the same finger (match) or from two different fingers
(non-match) were presented side-by-side. Images wete presented on computer screens and were
always oriented upright. Examiners had a maximum of three minutes to evaluate each pair of
images. Performance was recorded for each print-pair tested.

Procedure

Participants were tested in a large room, seated at desks with individual laptop computers. Before
data collection began, each participant was asked to sign a consent form, and then given written
instructions detailing how the stimuli would be presented and the judgments they would be required
to make. Participants were told that they would be asked to compare latent-known print paits and
determine whether they were matches or non-matches (without the option to choose “inconclusive”
as a response). Participants were also told that they would be asked for confidence and difficulty
ratings for each of their judgments. The instructions emphasized that this procedure was not

22

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



intended to replicate real-world conditions and that participants should simply try to maximize
accuracy. Participants were also instructed to tefrain from using any fingerprint examiner tools not
provided by the experimenter, such as 2 compass.

When the experimental program was initiated, participants were asked to report their age, gender,
years of experience, specialization, TAT certification, lab accreditation, and lab affiliation. Reporting
this information was optional.

Next, the expetiment began. On each trial, two fingerprints were presented side-by-side. The latent
print was always on the left. A button in the top-left cotner of each image window allowed
participants to zoom in on each image individually. Fingerprint size was constrained within the
bounds of each window, so that each print was always viewed through an aperture of 460 pixels by
530 pixels. The initial presentation of the images had them scaled to fit entirely in this window. A
single level of zoom allowed participants to magnify the image. Participants could also translate each
image independently within its window (both when the image was zoomed ot unzoomed) either by
dragging it with mouse or by using arrow buttons in the top-left corner of each image window. No
other image manipulation featutes were available.

Participants made a match/non-match judgment by clicking a button at the bottom of the screen.
Specifically, participants were asked: “Do these ptints come from the same source or a different
source?” Participants then made difficulty and confidence ratings by clicking on a Likert scale. The
participants were asked: “How difficult is the compatison?” and “How confident are you in your
decision?” On the Likett scales, “1” corresponded to least difficult / least confident and “6”
corresponded to most difficult / most confident. Once all responses were recorded, an additional
button appeared allowing the participant to advance to the next trial. Figure 3 shows a sample
screenshot of the experiment.

Participants had three minutes to complete each trial. A message was given after two and a
half minutes warning them that the trial will end in 30 seconds. If the full three minutes
elapsed without a decision, the trial was ended, and the participant moved on to the next
trial. After presentation of a set of 20 print paits, patticipants were given a short break and
asked if they wanted to complete another set of 20 compatisons.
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Which conclusion do you think is most likely?
Same Source Different Source

On a scale of 1-6 with 1 being Very Easy and € being Very Difficult,
How difficult was it to compare the images?

1 2 3 4 5 6 Difficult

0n 2 scale of 1-6 with 1 being Not Very Canfident and 6 belng Very Confident,
How confident are you in your decision?

Mot Very 1 2 3 4 5 6 Very Confident
Canfident

Figure 3. Screenshot of a sample trial from Experiment 1. Examiners could use the keys in
the windows to change position or zoom level. Responses were made by clicking on the
buttons shown in gray. Once all responses were provided, a button appeared allowing the
user to advance to the next trial.

Each set of 20 print pairs contained ten match and ten non-match compatisons. The otder in which
print pairs were presented within a set was randomized across subjects. The sets wete presented in a
pseudo-random order so that approximately ten participants completed each set. Although the
number of trials completed by individual participants varied based on their availability and
willingness to do more compatisons, most participants completed two sets of prints (40 print pairs).

Experiment 2. Novices

Subjects

Participants were undergraduate students at University of California, Los Angeles, who patticipated
in the experiment for partial course credit. 36 novices wete randomly assigned to either the “no
training” or the “training” groups, with 18 subjects per group.

Apparatus

All stimuli were presented using Matlab and routines from the Psychophysics Toolbox (Brainard,
1997). Displays were presented on one of three 16” x 12” ViewSonic Graphic Series G225f
computer monitors in the UCLA Human Perception Laboratoty, each with a resolution of 1024 x
768 pixels and a refresh rate of 60 Hz. The obsetver sat approximately 40 cm from the screen.
Participants responded using a keyboard.

Stimuli
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Fingetprint pairs (latents and known prints) were selected from the fingerprint database. As in
Experiment 1, latents could be paired with a cotresponding known print (match) ot with a close
non-match retrieved from AFIS (see Database Creation).

Subjects in the training group watched a 5 minute video (“How to Compare Fingerprints — The
Basics”) before beginning the experiment. The video described the fingerprint compatison process,
identified cores and deltas and how they could be used in fingerprint matching, as well as other
fingerprint features, such as minutiae and ridge counts. A sample comparison was petformed in
which winntiae wete used to match two fingerprints.

Design

One hundred print pairs were selected randomly from the database. Each print pair came from a
different individual. Half of the print pairs were matches and half were non-matches. Based on pilot
data, novices went through comparisons fairly rapidly and could complete all 100 in approximately
40 minutes.

Prints were displayed side-by-side with the latent print always on the left-hand side of the screen and
known prints on the right. Images wete large, approximately 6 inches x 6 inches in size, although the
size of the fingerprint within each image varied. Fingerptints wete roughly 4 inches x 5 inches. The
ptesentation order of comparisons was randomized across patticipants.

Procedure

Subjects sat at desks with computers in a well-lit room. On each trial, two fingerprints were
presented side-by-side. The latent print was always on the left. Subjects responded whether the two
ptints were the same or different by pressing the Y or N keys on the keyboard. Each participant also
made difficulty and confidence ratings. Participants were asked: “How difficult is the comparison?”
(with 1 as easiest and 6 as most difficult) and “How confident are you in your decision?” (with 1 as
least confident and 6 as most confident). Subjects responded by pressing a number key on the
keyboard. Once responses to all three questions were entered, the participants could proceed to the
next trial by a key-press. Participants were instructed that they should try to maximize accuracy. No
other fingerprint examiner tools (e.g., a compass) were made available.

For the training group, subjects first watched an approximately 5-minute long YouTube video
describing the fingerprint comparison process. Novices who received no training immediately
started the experiment without watching any video.

The study began with a practice session of 6 comparisons on which subjects received feedback
(cortect ot incorrect). After making a match response and submitting confidence and difficulty
ratings, the two print images from the trial wete shown again on the screen with the feedback
printed above them to allow subjects to re-examine the images.

Experiment 3 — Experts with Advanced Tools

Subjects

Thitty-four examiners (16 male, 18 female; age range: 29-62), were recruited via personal contact.
Twenty identified as latent examiners, one as a tenptint examiner, and 13 as both. Years of
experience for latent examiners ranged from 1 to 36. Bight reported being IAI accredited. Thirty
reported as coming from accredited labs or offices.
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Apparatus

The experiment was conducted over a specially designed website that was a modification of the one
used in Experiment 1. The basic structure was the same, including a login screen, consent form
screen that included an electronic signature and a link to a downloadable pdf document that
contained the consent information, a demographic form sheet that was optional, and the actual
experiment page that displayed two fingerprint images. The welcome screen also included a
password and login section. Passwords were e-mailed to users individually during recruitment and
they were allowed to generate their own login names. Users were able to re-login as often as they
liked and their progress was saved across sessions. The instruction screen was greatly expanded to
include participation guidelines, system requirements, and image manipulation button control. All of
these are described below.

Because subjects were allowed to complete the experiments remotely, no information about monitor
size is available. In the instructions, usets were asked to ensute that their monitors had a minimum
resolution of 1200x720 pixels. Users were asked to click on a calibration button to adjust resolution
and monitor brightness and contrast settings. Four shapes were shown and users were asked to
adjust monitor resolution until all appeared to have equal side lengths with no distortion (pixel
height and width should be equal). A brightness bar with 32 levels from black to white was shown
below. Instructions stated that all 32 colors on the bar should be visible, with equal steps from bar
to bar. In particular, users were instructed to adjust monitor contrast and brightness if the darkest
bar was not seen or if there was a very large change in brightness between the final two bars. Users
were expected to make these adjustments on their own. No feedback was provided and no
measurements were taken by the website. Users were also instructed to use an up-to-date browser
from among the following list: Firefox, Chrome, Safati, or Opera.

Unlike Experiment 1, the website had added functionality meant to reproduce some of the image
processing features typically available to examiners in actual practice. Each fingerprint image (both
the latent and known print) had a toolbar on the left-hand side with a 16 buttons. In addition, a
navigation cross appeared within the boundary of the image that enabled usets to pan across the
image (up, down, left, or right) by clicking on the arrows of the cross. A zoom bar was located
directly below it that allowed someone to step through four levels of zoom. All images began
maximally zoomed out. A screenshot of this design is visible in Figure 4.
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Prints completed:

Which conclusion do you think is most likely?
Same Source Different Source

If you had the option to mark this comparison as inconclusive, would you?
Yes No

Figure 4. Screenshot of a sample trial from Expetiment 3. The rest of the screen that
included questions about difficulty and confidence ratings is not shown in this figure. Those
questions would appear lower down on the page. The genetal layout was similar to that used
in Experiment 1. In addition to the basic tools available in Experiment 1, an additional
toolbar appeared to the left of each image to allow independent image manipulation.
Hoveting over an icon in the toolbar caused some hypertext to appear that described the
tool. Clicking on the instructions button in the upper-right-hand cotner provided access to
detailed descriptions of each tool. A progtess count indicating how many comparisons were
completed appeared to the left of the instructions button.

A description of the image manipulations available in the toolbat appeats below:

1) Zoom out completely (tevett to otiginal zoom level).

2) Free pan. By clicking on this button, a user would be able to manipulate the region of the
fingerprint image that appears in the viewing window by clicking and dragging the image
allowing different areas to become visible in the window. When maximally zoomed out, the
entire image fit within the window.

3) Place new markers (on/off). Clicking on this button enabled marker placement. By default,
the markers were green circles, howevet, the marker symbol and color could be changed.
Markers remained in the correct positions on the image through zooming, panning, and
rotation.

4) Change marker symbol. There were 5 matker symbols that could be used: citcles, stars,
crosses, triangles, and lightning bolts.

5) Change marker color. There were 4 marker colors: light green, dark green, red, and blue.

6) Erase marker. After clicking on this button, when the cursor hovered over a marker on the
image, that marker was highlighted. Clicking on the marker removed it from the image.

7) Rotate image left (counter-clockwise) by 15 degrees.

8) Rotate image right (clockwise) by 15 degrees.

9) Reset rotation to otiginal otientation.

10) Free rotate. Enable rotation one degree at a time by pressing the up and down keys.

11) Increase brightness of the image.

12) Decrease brightness of the image.

13) Increase contrast of the image.

14) Decrease contrast of the image.
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15) Invert brightness of the image (black to white).
16) Undo all brightness and contrast manipulations (revert to values of original image).

An instructions button appeared in the top-right corner of the display. That could be used to re-
access the screen shown at the start of the study. Image manipulations were not saved across login
sessions. For example, if a user added markers to an image, but did not make a comparison
judgment by clicking on the appropriate button and exited the experiment by closing the browser or
logging out, the markers would not be visible when they logged back in.

Stimuli

Fingerprint pairs were selected from the database with the following constraints. Half of the
examples came from Experiment 1. A subset was chosen that spanned a range of accuracies and
included an equal number of matches and non-matches. This allowed us to validate the model on a
new set of subjects. The regression model was then used to predict performance for the remaining
print pairs that were not used in Experiment 1. Print pairs were selected to have a range of predicted
accuracies from this set. In total, 120 pairs were chosen, 60 from Experiment 1 and 60 new paits.
Each set of 60 was composed of half matches and half non-matches.

Design

The design was similar to Experiment 1. Participants performed a two-alternative, forced choice
(2AFC) task to determine whether two fingerprint images wete a match (came from the same
source) or not. There were 120 fingerprint pairs in the experimental set. The order in which they
were presented was randomized across participants. Print images were presented side-by-side with
the latent always on the left and the known print always on the right (see Figute 4). Fach image had
a manipulation toolbar to the left that allowed for a variety of image manipulations to be performed
(see Apparatus section for details).

Procedure

Subjects were emailed a link to the experimental website as well as a password to access the site. On
the welcome page, subjects read a brief description of the study and were asked to generate a
username to use for accessing the site across sessions. Once a username and their password were
entered, users were provided with a link to a pdf of the consent form and were instructed to
download and read the form and to provide an electronic signature on the website. The following
screen prompted users to provide some optional demographic information similar to Experiment 1.
The next screen showed instructions for the experiment, the purpose of the study, and a description
of the image manipulation tools as outlined above. The icon for each tool was shown, along with a
description. Once the instructions were read, users continued to the actual experiment. Users made
one compatison at a time and had to respond to all questions before continuing, similar to
Experiment 1. Users were asked if the two images came from a same source or a different source
and were asked to provide a difficulty and confidence rating for the compatison, similar to
Experiment 1. In addition, and in distinction from Experiment 1, after making an identification or
exclusion response, users were asked whether they would have matked the pair as inconclusive. If
users logged out in the middle of a trial, the same trial would resume when they logged back in.
However, all image manipulations that they had performed up to that point were reset. On a trial,
users could adjust each of the two images independently with the manipulation tools. In addition, in
this experiment, there were no time limits on each trial; examiners could take as much time as they
wished. In all other respects — apart from the additional image manipulation tools, the absence of
time limits, and the inquiry into whether the examiner would have selected ‘inconclusive’ if that had
been an option — the procedure for this expetiment was identical to that of Experiment 1.
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Analysis Methods

Data Preprocessing

For the fitst expetiment, if the examiner made a match/non-match judgment, but time expired
before they could make difficulty or confidence ratings, the data wete retained. If only difficulty and
confidence ratings wete provided, but a comparison judgment was not made before time expired,
the trial was excluded from the analyses. Twenty such trials were excluded from the total of 2,312
compatisons (fewer than 1%) in Experiment 1. No other special preprocessing steps were
undertaken for any other studies.

Descriptive Statistics and Correlations

For each experiment, average performance was computed for all comparisons, separately for match
and non-match trials, separately for each individual, and for each print pair. Average difficulty,
confidence, and response time ratings were also computed for each print pair and subject.
Cotrelations were computed between accuracy, difficulty and confidence ratings, and response time.
In Expetiment 3, data were split by what tools were used and whether a print pair was rated as
inconclusive or not.

Regression Analysis

We fit a crossed, logistic regression model in which print pair performance (1 = accurate; 0 =
inaccurate) was crossed with expert and print identity. This is a type of mixed-effects model and is
approptiate for analyzing these data for several reasons (Breslow & Clayton, 1993; Baayen,
Davidson, & Bates, 2008). First, not every subject evaluated every print pair. A mixed-effects
approach enables the examination of both the predictor vatiables and the “random effects” due to
inter-subject differences (i.e., differences between expett petformance and differences between
evaluations of the same print pair by multiple experts). Second, a mixed-effects approach allows one
to model individual item differences by fitting data from individual trials instead of aggregating
across all presentations of an item (Dixon, 2008; Jaeger 2008). Diffeting levels of expertise and
experience, as well as differences in comparison strategy and decision thresholds, could give rise to
vatiability in participant performance independent of the fingerprint features. Variability across
items could occur if some comparisons wete easier than others irrespective of differences in
measured image features. Including these soutces of vatiability in the model allows us to test
whether print comparisons and experts differed from one another, instead of assuming they were all
equivalent and simply averaging across patticipants and items. Data were fit using the “arm”
(Gelman & Su, 2013) and the “Ime4” (Bates, Maechlet, & Bolket, 2012) R packages for R version
2152

For each of 7 print-pair compatisons (items) and / experts (subjects), we define y;; as
_ (1 ifprint — pair i is accurately classified (correct identification or rejection) by expert j
Y= {0 if print — pair i is inaccurately classified (false alarm or miss) by expert j
Accuracy for any particular print pair and expert, Pr(y;; = 1), was modeled with a logistic regression:
Pr(y; = 1) = logit"(X;;8 + ptintID; + expertID), fori=1,...,200, j=1, ..., 56 1
where X;;is a vector describing the features measured on a print pait, £ is a vector of coefficients
(the fixed effects; one coefficient for each feature), expertID; is the expett-specific random effect,
which allows the intercepts to vary across experts, and printID;is the item-specific random effect.
expertID and printID were normally distributed.

The regression equation can be rewritten and expanded as:
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where # is the number of predictors. In this form, it can be seen that printlDD and expertID can be
grouped with flyas intercept terms. Because print]D) and expert]DD are vectors, the equation reflects
that each combination of print and expert has its own intercept term. It is this combined term (B +
printlD; + expertID);) that varies across experts and items. Multi-level modeling allows one to
capture possible differences between individual subjects or test items without fitting a separate
regression equation for each item (by applying a distribution over the tertns that vary, in this case
printlD and expertlD; see Gelman & Hill, 2007).

The parameter expertlD is defined as:

ny .
— 5
g, a,
. in — o expertlD
expertlD; =~ w1 (yj - ﬁxj) + . 1 Hexpertip
oz pJ aZ 2

H CTex}:vertli) H JexpertlD

Where 1y is the number of print-pairs evaluated by expert /, U,uz is the within-expert accuracy
variance, agxpertlb is the variance among the average accuracies of different experts, ¥; is the
average accuracy for expert j, and fpyimeipis the overall average accuracy across expetts. From this
equation it can be seen that expertID is a weighted average between the individual estimates of the
intercept for each expert (37]- -f fj) and the average intercept across expetts, Uexpertrp- When
dgxpertm is small, the right-most term dominates and the model approaches a regular tegression
model with a single intercept for all experts. When dezxpertID is large, greater weight is placed on
individual intercepts, and it is as if there is a separate regression model for each expert’s data.

expertIDyis therefore a pooled estimate of the intercept term for each expert, taking into
consideration across-expert differences in performance.

Each expertID is assigned the probability distribution

expertID; ~ N{Mewpearn,G expentn), for /=1, ..., 56
with the parameters of the distribution estimated from the data. One can see from this distribution
that it has the effect of pulling the overall intercept closer to the average accuracy (Hexpewn) if there is
little variability among experts (when 0 epenn is small), and pushing toward individual regression
equations for each expert when variance is large. The rato of individual (within-examiner) and
group (across examiners) variances is the intraclass correlation. It is defined as:

2
OexpertiD

2 2
JexpertID + O-u

When the intraclass correlation is close t0 0 (6%epentn is small and % is large), it indicates that
differences between examiners conttibute little to accuracy. Intraclass correlations close to 1 (large
O epean telative to 6%) indicates that group differences contribute a lot to accuracy and that there is
little variability within groups. Defining expertID;in this way allows the model to incorporate
potential individual differences among experts. printID; is defined in a similar way.

Individual differences amongst experts may arise due to differences in experience, training, and
other factors. These could manifest as different baselines of performance, or intercept terms in the
model. All else being equal, one expert might do better with the exact same print pair than another
expert. This variability is captured by the expertID) term in the model. It is also possible to model
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item-specific (in this case, print-pait-specific) effects; these are represented by printID. printID
captures differences in print comparison difficulty inherent to individual print pairs and not related
to the features used to predict print pair accuracy. In constructing a model, it is assumed that the
etror terms are uncorrelated; however, it is possible that print pair errors are correlated across
patticipants. Inclusion of the item-specific term captutes this potential non-independence (Baayen et
al., 2008).

The regression model gave a predicted accuracy for each fingerprint pair. This was compared to the
average observed accuracy. Model performance was measured as root mean squared error given by
the following equation:

RMSE = Z (observed accuracy — predicted accuracy)?
print pairs

RMSE values close to 0 indicate close agreement between observed and predicted accuracy actoss
many print pairs; values closer to 1 indicate a poor fit. Further, we plotted observed vetsus predicted
accuracy, fit a straight line to the data points, and computed R?, a measure of linear fit.

Model Validation

In addition to cteating models of accuracy, we fit similar models to difficulty and confidence ratings
and response time data. Overlap in selected predictors with appropriate signs provides additional
evidence for their importance. If, for example, Area Ratio was a significant positive predictor of
accutacy, but was irrelevant for predicting difficulty and confidence ratings, we may have reason to
be suspicious of its import.

We withheld 20% of the collected data from model fitting to use as a testing set. Models were fit on
the remaining 80% of the data (the training set) and were then used to generate predictors for the
withheld 20%. Petformance was measured for both the training and testing sets. Testing sets are
important to use to ensure that models are not over-fit to the specific sample.

Signal Detection Theory Measurements

In addition to basic accuracy information, one can distinguish between sensitivity and bias in subject
tesponses. This is the basis of signal detection theoty (Green & Swets, 1966). Sensitivity describes a
sensor’s ability to detect a signal. Once a signal is detected, the observer needs to make a decision
about how to classify the signal, e.g., whether two prints were from the same source or not. Because
sensors are subject to both external and internal noise, the exact same stimulus may elicit different
responses actoss presentations. Sensitivity, 4’ (pronounced “dee-prime”), was computed with the
following formula:

d' = Z(hit rate) — Z(false alarm rate)
Where Z is the inverse of the cumulative Gaussian distribution, 4 rate is the proportion of “match”
responses to match trials out of the total number of match trials, and false alarm rate is the proportion
of “match” responses to non-match trials out of the total number of non-match trials. Values close
to 0 indicate poor discriminability (inability to tell apart matching print pairs from non-matching
pairs); higher values indicate better discrimination performance. For details, see, e.g., Green and
Swets (1966).

Because of the high accuracy among experts found in other studies (e.g. Tangen et al., 2011), we
expected their sensitivity to be very high, even for Experiment 1, which had time and tool
constraints. We did not have a firm expectation for novices since reports of novice performance

31

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



were quite vatied in terms of their performance. For example, Tangen et al. (2011) found accuracy to
be around 75% for matches and around 50% for similar non-matches.

Bias was computed by calculating the log £. The measure can be thought of as the bias to respond
“yes” or “no” in a forced-choice signal detection task. For the current study, the two alternatives can
be thought of as “match” or “non-match” responses. It is also the log likelihood-ratio for a
statistical decision test (see e.g., Wickens, 2002). The bias is computed by the following formula:

log — 1og 22— )

T e
where @(x) is the Gaussian density function, 4”is the sensitivity, and 4 is the decision critetion
boundary given by —Z(false alarm rate).

A score of 0 indicates no bias. That is, no preference for saying “match” vs. “non-match”
irrespective of one’s discriminative ability (i.e., expertise). Deviations away from 0 indicate a
preference toward saying “match” or “non-match”. Positive bias scores indicate a mote conservative
decision ctiterion, a propensity to say “non-match” more often. Negative bias scores indicate a more
liberal decision criterion, a propensity to say “match” more often.

We expected that experts would show a slight conservative bias, favoring “non-match” responses
because of the high cost of making a false identification. Novices who received no training might
not have the same associations with the fingerprint matching task and might show no bias. Tangen
et al.’s study, however, indicates that there may be a bias toward saying “match”. This would explain
the significantly greater accuracy for matches compared to non-matches. Novices who watched the
brief training video were made aware of the importance and difficulty of matching fingerprints and
so might show a bias similar to experts or a reduction of the bias toward saying “match” shown by
novices who did not watch the video.

II1. Results
Experiment 1

Descriptive Statistics

Responses were aggregated across participants and prints. Overall accuracy (percent of correctly
classified latent-known print pairs, averaged across subjects) was 91% (range: 8.3 -100%, SD 17%).
Average accuracy was 86% for “match” trials (14% false negatives) and was 96.8% for “non-match”
trials (3.2% false positives). Of the 2,292 comparisons, there were 200 etrors, resulting in an overall
error rate of 9.6%. Accuracy for particular print pairs ranged from 86% to 95%. There was some
variability in performance among experts (range: 79-100%, SD 5%).

Non-matching trials include prints that do not originate from the same soutce; participants
responded to a total of 1144 of these trials. Participants correctly labeled 96.8% of the non-matching
trials as “no match” (correct rejections), and incorrectly labeled 3.2% of the non-matching trials as
“match” (false alarms). In absolute terms, patticipants cotrectly labeled 1107 of the 1144 non-
matching trials as “no match” (correct rejections), and incorrectly labeled 37 out of the 1144 non-
matching trials as “match” (false alarms). Nineteen examiners made at least one false alarm, and
twenty-seven of the non-matching fingerprint stimulus paits caused at least one false alarm.

At the level of the stimulus, nineteen fingerprint stimulus paits accrued one false alarm each; six
accrued two false alarms each; and two accrued three false alarms each. At the level of the
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participant, twelve participants made one false alarm; three participants made two false alarms; three
participants made three false alarms; and one participant made ten false alarms.

Actoss all participants, 118 of the 200 print pairs produced 100% accuracy. Mean difficulty and
confidence tatings for these pairs were 2.62 and 5.23 respectively, compared to ratings of 4.06 and
4.15 for prints that were misclassified by at least one patticipant. Of the 118 pairs that produced no
crrots, 72 wete non-matches and 46 were matches. The lowest aceuracy, 8.3% (1/ 12), was for a
“match” print-pair. Average accuracy for each print pair is shown in Figure 5 sotted by increasing
accuracy.

There was a significant difference between average tatings of difficulty for hits (M = 2.95, SD
=1.58), misses (M = 4.57, §D =1.25), correct rejections (M = 3.17, SD = 1.60), and false alarms (M
= 5.16, SD = 1.04), F(3, 2278) = 69.51, p < .001. Post-hoc compatisons revealed that all pairwise
differences ate significant at the 0.05 level (Bonferroni adjusted p < 0.001) except for the
compatison of misses and false alarms (Bonferroni adjusted p = 0.22).

In assessing average confidence when participants wete cotrect versus when they were incorrect (i.c.
collapsing hits and correct rejections and misses and false alarms), there was a significant difference

between average ratings of confidence fot correct (M = 4.96, SD = 1.41) versus incorrect responses
(M = 3.30, 5D = 1.57), t(2280) = -15.80, p < .001.
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Figure 5. Sorted average accuracy for each print pair. Print paits are numbered along the x-axis
from 1-200 in order of increasing accuracy.

There was a significant difference between average ratings of confidence for hits (M = 5.21, §D =
1.25), misses (M = 3.42, SD = 1.57), correct rejections (M = 4.74, SD = 1.50), and false alarms (M =
2.76, 5D = 1.44), F(3, 2278) = 106.64, p < .001. Post-hoc compatisons reveal that all pairwise
differences are significant at the 0.05 level (Bonferroni adjusted p < 0.001) except for the
comparison of misses and false alarms (Bonferroni adjusted p = 0.06).
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There was a significant difference between average confidence ratings for trials in which participants
responded “match” (M = 5.12, D = 1.34) versus “no match” (M = 4.57, §D = 1.57), #2280) = -
8.76, p < .001. There was a significant difference between average confidence ratings for matching
trials (M = 4.95, §D = 1.44) and non-matching trials (M = 4.68, SD = 1.53), t(2280) = -4.39, p <
0.001.

There was a significant difference between average difficulty ratings for trials in which participants
responded “match” (M = 3.03, SD = 1.62) versus “no match” (M = 3.35, §D = 1.63), #2280) =
4.6867, p < .001. There was no significant difference between average difficulty ratings for matching
trials (M = 3.18, D = 1.64) and non-matching trials (M = 3.23, SD = 1.63), 2280) = 0.8306, s.

For the seventy-four trials on which a particular examiner got a trial correct (hits + correct
rejections) and for which at least two other examiners got incorrect (misses + false alarms), the
average confidence rating was 3.51 (§D = 1.75) and the average difficulty rating was 4.59 (§D =
1.32). For the 837 trials on which a particular examiner got a trial correct (hits + cortect rejections)
and for which all other examiners got correct (hits + correct rejections), the average confidence
rating was 5.00 (§D = 1.34) and the average difficulty rating was 2.86 (§D = 1.53). The difference
between the confidence and difficulty ratings for the two sets were significant (confidence: £909) =
9.83, p < 0.001 ; difficulty: £909) = -9.39, p < 0.001).

‘There are many hits (438) and correct rejections (435) that the experts rated as not difficult
(difficulty rating of 1 or 2) (total = 873 or 41.9% of the total number of correct responses). There
were fewer hits (190) and correct rejections (257) that the expert rated as difficult (difficulty rating of
5 or 6) (total = 447 or 21.5% of the total number of correct responses). There wete very few false
alarms (1) and misses (9) that experts rated as not difficult (total = 10; 5.0% of the total number of
incorrect responses). There were more false alarms (29) and misses (88) that the expert rated as
difficult (total = 117; 58.8% of the total number of incorrect responses). This set of findings —
showing that overall examiners have reasonably strong abilities to assess the difficulty of
comparisons — offers interesting insights into examiners’ metacognitive abilities, which we are
currently in the process of analyzing further for an additional paper on the topic.

Correlations Among Dependent Measutres

We measured the correlations of accuracy with the other three dependent measures. There was a
strong negative correlation between average difficulty and confidence ratings ((198) = -0.91, p <
0.001) and weaker correlations between average accuracy and confidence (/(198) = 0.52, p < 0.001),
and between average accuracy and difficulty (#(198) = -0.50, p < 0.001). Thete was also a strong
positive correlation between response time (RT) and difficulty (#(198) = 0.71, p < 0.001) and a
negative correlation between response time and confidence (/(198) = -0.59, p < 0.001). Accuracy was
highest and RT lowest for prints that were rated least difficult. Accuracy decreased and RT increased
as print difficulty ratings increased. Excluding the 118 prints with 100% accutacy, the correlations
between accuracy and confidence and difficulty were qualitatively weaker, but the difference did not
reach significance. The full set of cotrelations is shown in Table 1.

Table 1. Correlations between dependent measures
All Fingerprint Pairs

Accuracy  Confidence  Difficulty

Confidence 0.521#*
Difficulty -0.50%#* -0.97%%*
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Response Time | -0.48%%k () 50%%x 0.71%kk

Fingerprint Pairs with Accuracy < 100%

Accuracy  Confidence  Difficulty

Confidence 0.36%*
Difficulty -(0.32%* -0, 89k
Response Time -0.22% -0.34** 0.45%H*

Note. ¥ p < 0,001, **» < 0.01, * p < 0.5
p » P

Regression Model

A cross, logistic regression model was initially fit to the entire dataset as desctibed in the Analysis
Methods section. A model was fit with all of the predictors (after removal of some to minimize
collinearity). A likelihood ratio test showed that the model with the predictors fit the data better than
a null model with only the random effects terms (x*(17) = 53.27, p < 0.001).

Comparing a model that included the random expett effect (expertID) to one that did not, we found
that the Akaike Information Ctiterion (ATC) was slightly smaller for the model that included the
effect, but the Bayes Information Criterion (BIC) was smaller for a model that did not. Both of
these measures are information-theotetic mettics of goodness-of-fit that take into consideration the
overfitting the data with excess parameters, Qualitatively, a more parsimonious model that fit the
data almost as well would have a smaller AIC and BIC (Akaike, 1973; Burnham & Anderson 2002).
The fact that the criteria move in opposite directions when the model includes expertTD suggests
that any differences between the models should be treated with caution. A likelihood ratio test
compating the two models was significant (x*(1)=4.79, <0.05) (Zuur, Ieno, Walker, Saveliev, &
Smith, 2009). expertID terms vatied from between -0.52 % 0.69 to 0.44 * 0.77. All values of
expertlD) were within two standard errors of zero. In terms of Equation 2, this means that f,+
expertlD) was not reliably different from fo. Based on these analyses, we felt justified in averaging
across expetts and ignoring between-expert differences in all subsequent modeling steps by
removing the expertlD term. This same analysis could not exclude the print-pair specific term,
printlD, which was retained in the model.

We simplified the model further by removing predictors (fixed effects) based on minimization of the
AIC (Zuur et al,, 2009). A likelihood ratio test tevealed no statistically significant difference between
a model that included all of the predictots and the reduced model (}*(11) = 9.55, p > 0.05),
indicating that the removal of predictors increased parsimony without significantly impacting
predictive ability. Similar methods were applied to novice data from Experiment 2 and expert data
from Experiment 3.

The model obtained for accuracy was:
Accuracy = logit~*(3.385 + 0.798 * Delta (L) + 0.534 * Mean Block Contrast (K)

— 0.471 = Area Ratio — 0.451 = SD Block Contrast (L x K) + 0.419

* Sum of Ridge Measures + 0.334 + DEAI (L xK) + printID)
Where L and K indicate whether the predictor applies to a latent or known print image respectively,
and LxI indicates predictors that apply to print pairs. printID is the item-specific, random effect.
The parameters of the fitted model are shown in Table 2. All predictors were significant (Wald’s
15 <0.05), except for Delta (L) and DEAT (T.xK) which wete matginally significant (p = 0.054 and p
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= 0.053 respectively)”. To get a mote intuitive notion of model performance, we used the predicted
proportions from the logistic regression as estimates of average performance across experts. The
resulting fit was very good (R%g = 0.91). We also computed the root mean squated etror (RMSE) by
taking the sum of the squared differences between predicted and observed values. Values closer to 0
indicated better performance. The error for the fitted model (RMSE ot = 0.06) was lower than for
a null model that only included the printID random effect (RMSE.i= 0.18).

Table 2. Predictors for accutacy model.

Fixed Effects Coefficient Estimates  Standard Error zZ
Intercept 3.385 0.197 17.167%%*
Delta (L) 0.798 0.415 1.923
Mean Block Contrast () 0.534 0.164 3.268**
Area Ratio -0.471 0.156 -3.010%*
SD Block Contrast (LxIK) -0.451 0.128 -3.53(prk
Ridge Sum 0.419 0.154 2.715%*
DEAT (LxK) 0.334 0.173 1.938
Random Effects Vatiance

printID 2.154

Note: *** p < 0.001, **p < 0.01, * p<0.05. p-values are reported here, but should be interpreted
with caution. They were not used for model selection (see Footnote 2). Estimates are arranged by
coefficient magnitude in descending order (see text). L — latent, K — known print, LxK — interaction.

Validation of the Regression Model for Accuracy

The dataset was then split into training and testing sets. First training on the full dataset was used as
a check to make sure that the model could fit at all. If it had failed to fit on the full dataset, there was
no point in training on a subset of the data. The training set contained 180 (90%) of the print pairs
(2063 individual observations), and the testing set contained the temaining 20 print-pairs (10%, 229
observations). The testing set print pairs were a representative sample of the overall dataset,
containing 12 pairs with perfect accuracy and 8 pairs with less-than-perfect accuracy. This was
important in order to ensure that the training set did not have too few pairs with low accuracies
(there were only 24 pairs in all with average accuracies below 80%). We replicated the model
selection procedure for data only from the training set. The same predictors were selected with
compatrable coefficients, except for Delta (L) which was replaced with Core (L). For both the full
and training datasets, the coefficients for these two predictors, Delta (L) and Core (L), were not
significandly different from zero and were within two standard deviations of zero. Nevertheless, they
could not be excluded based on the selection procedure described above. The fit of the model to the
training set was comparable to that of one on the full set (R%q = 0.89, RMSE. i = 0.07). The results
of fitting on the full set were therefore not likely due to overfitting.

We used this regression model fitted to the training set to predict accuracy for the withheld training
set of 20 print pairs. Less variance could be accounted for the testing set than for the training set,
suggesting some amount of overfitting (R’ = 0.64). The error, however, was comparable between
the training and testing sets (RMSE.«= 0.07). The model’s predictions ate shown in Figure 6.

1 p-values for the Wald statistic in unbalanced, mixed-effects data are difficult to define due to difficulty in determining
the appropriate degrees of freedom and therefore should be interpreted with caution (Agresti, 1996, 2002; Baayen et al.,
2008).
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Figure 6. Model predictions of average accuracy for 20 test print pairs plotted against observed
average acCuracy.

As a secondary assessment of model performance, we used the model to predict whether at least
one expert made an etror on a print pair. We divided the set of print paits into two classes: those
that had 100% accutacy (perfect pairs) and those that had less than 100% accuracy (non-perfect
pairs). A naive classification strategy not based on the model and that assumes no errors are ever
made would have a classification accuracy of 107/180 or 59%. Using the model fitted to the training
set, we parametrically varied a classification threshold such that print paits with a predicted accuracy
greater than or equal to that threshold wete classified as perfect paits and those below that predicted
accuracy were classified as non-perfect pairs. A threshold setting of 94% resulted in the best
classification performance of 164/180 or 91% cotrectly labeled paits.

The classification procedure described above was repeated for predictions generated for each left
out (testing) pair using the threshold optimized on the training set. 75% (15/20) of the pairs were
cortectly classified as either having perfect (9/15) or non-petfect accuracies (6/15). The classifier
was slightly better at correctly identifying print pairs that had at least one error than those that were
petfect: 3 perfect prints were misclassified as having an error and 2 non-petfect pairs were
misclassified as perfect.

Difficulty Ratings

Difficulty ratings showed a reliable negative correlation with accuracy (see Descriptive Statistics,
above), indicating that experts had reasonable metacognitive awateness (i.e., print pairs that were
thought to be difficult tended to have low accuracy across expetts). Accuracy for trials with a
difficulty rating greater than 3 (on a scale of 1 to 6) was 84% compared to 91% for all comparisons.
We compared the fitted model from the previous section to one that also included difficulty rating
as a predictor. The resulting model had significantly better goodness of fit than the model from the
preceding section that did not include it as a predictor (x*(1)=81.1, #<0.001, RMSE modettditticuty = 0.05,
Rzadi = 095)
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We added difficulty rating as a predictor for the regression model applied to the training set
described above. Predictive petformance on the testing set was worse (decreased R?) than when the
difficulty rating was not included. However, classifier performance on the testing set was slightly
improved, with 85% (17/20) of the pairs classified correctly. One petfect print was misclassified as
non-perfect, and two non-perfect prints were misclassified as perfect. The discrepancy between the
relatively worse regression fit and the improvement in classifier performance is due to two non-
petfect print pairs that had a predicted accuracy that was much lower than their true accuracy. These
were classified correctly as non-perfect, but contributed significantly to the error.

The inclusion of difficulty ratings in applications of this model must be made with caution. All other
measures capture objective features of the fingerprint image, while difficulty ratings are subjective
and therefore may vary across individuals and rely on the good faith of the raters. Therefore, while
difficulty rating may be informative to include, in subsequent models we opt to exclusively deal with
objective factors. We return to this point in the discussion.

Regression Analysis of Other Dependent Measures

Difficulty ratings, confidence ratings, and response times were reliably correlated with accuracy and
so ought to also depend on print pair information content. If similar features are predictors for -
many measures, then they are likely capturing something important about the fingerprint images.
Here, we fit models of the other dependent measures to the training dataset as a further validaton
step: the importance of particular image features as valid predictors of accuracy is bolstered if those
same features are shared in models of other dependent measures.

Unlike accuracy, response time varied greatly across experts, with some taking much longer times on
compatisons that others evaluated fairly quickly. There are several possible reasons for this
variability. Less expetienced examiners may take longer to come to the same conclusion than a
seasoned examiner (a perceptual fluency that comes with expertise; see Kellman & Garrigan, 2009).
Some subjects may have completed the comparison quickly, but then taken time to deliberate
confidence and difficulty ratings since response time was recorded only once all answets were given,
and not when the subject selected “match” or “non-match”. Also, the self-confidence of the
examiners in their abilities may have affected response time. Only a small component of the
variability in response time was likely to be due to differences in attention or interest since such
differences would presumably have led to greater variability in accuracy, which was not observed.

We fit a linear, mixed-effects model to normalized response time data for the training set following
the same model selection steps as for the accuracy model in the preceding sections. Due to the
variability in response time across expetts, the random effect of expertID was retained in the model.
The results of the regression are shown in Table 3. Three features, Core (L), Méan Block Contrast
(K), and SD Block Contrast (L) were found to be predictive of response time using the same model
selection procedure that was used for the analysis of predictors of comparison accuracy. The latter
two predictors were also selected in models of accuracy (SD Block Contrast as patt of an interaction
term). Visibility of cores instead of deltas was selected as a predictor of response time. Interestingly,
it also appears as predictor when the model is fit to a testing set. Visibility of a core might make it
simple to compare latents and known prints: if the cores do not match then no further comparison
is required, so a comparison can be made quickly. Absence of a core could also make it difficult to
orient the latent and known prints, since, as noted catlier, these features could act as landmarks for
orienting two prints duting compatrison.

Linear mixed-effects models were also fit separately for difficulty and confidence ratings. Like
response time, there was a great deal of inter-subject variability for both measures. Variability in
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confidence and difficulty ratings may be due to differences in degree of expertise and self-
confidence in the task. Variability in ratings may also be due to differences in interpretation of the
tating task and therefore in response strategy. One expett, for example, responded with maxitnum
confidence to all comparisons, saying to the expetimenter that in real-world situations an expert
would be 100% confident ot rate a comparison as inconclusive.

Table 4 contains the coefficient estimates for the model of difficulty rating, As in the model of
accuracy, Ridge Sum, Area Ratio, and Core (I} wete selected as predictors, Similar to response time,
difficulty was also negatively correlated with accuracy, so the regression coefficients have opposite
signs to those in the accuracy model. In addition, visibility of Cotes in the known print and the
interaction of the Core terms were also selected. Delta (L) appears in this model as well as in the
model of accuracy.

Table 4. Predictors for difficulty rating model.

Fixed Effects Coefficient Estimates Standard Error T
Intercept 2.748 0.301 0.121%*
Core (L. x K) 2.104 0.722 -2.913%*
Core (1) 1.719 0.705 2,437
Core (K) 0.935 0.324 2.883*
Delta (1) -0.778 0.191 -4 ()8 etk
Ridge Sum -0.207 0.079 2,631
Area Ratio 0.202 0.078 2571
Random Effects Vatiance

printID 1.076

expertlD 0.301

Note: *** p < 0.001, **p < 0.01, * p<0.05. Estimates are arranged by coefficient magnitude in
descending order (see text). L —latent, K — known print, LxK — interaction.

A similar model was fit for confidence ratings. The results are shown in Table 5. Identical predictors
with comparable magnitudes were selected as for the difficulty rating model. The coefficients have
opposite signs since high difficulty ratings correspond to low confidence tatings. Because difficulty
and confidence are so strongly correlated (-0.91), it is not sutprising that the exact same predictors
are selected for in both models.

Table 5. Predictors for confidence rating model.

Fixed Effects Coefficient Estimates Standard Error t

Intercept 5.248 0.247 21.255%%
Core (L x K) 2.034 0.564 3.6047+*
Core (L) -1.644 0.551 -2.983%*
Cote (K) -0.920 0.253 -3.63 1k
Delta (L) 0.581 0.149 3,899%H
Area Ratio -0.162 0.062 -2.647%*
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Ridge Sum 0.155 0.062 2.517%*

Random Effects Variance
printID 0.616
expertID 0.488

Note: *** p < 0.001, ** p < 0.01, * p<0.05. Estimates are arranged by coefficient magnitude in
descending order (see text). L —latent, K — known print, LxK — interaction.

Experiment 2

Descriptive Statistics

Opverall accuracy for untrained novices was 53%. There was a significant difference for the average
accuracy for “match” trials (62%) and “non-match” trials (45%, #(49) = 3.51 p < 0.001). Accuracy,
averaged across prints for individual participants, ranged from 42% to 62% (M = 53%; SD = 5.8%).
Of the 1800 comparisons, there were 838 errors, resulting in an overall error rate of 47%.

Overall accuracy for trained novices — and by ‘trained’ we mean only exposure to the shott video
presentation about fingerprint evidence and how it functions — was 54%. There was no significant
difference (p > 0.05) for the average accuracy for “match” trials (54%) and “non-match” trials
(54%). Accuracy, averaged across prints for individual participants, ranged from 43% to 75% (M =
54%; SD = 7.5%). Of the 1800 comparisons, there were 826 errors, resulting in an overall error rate
of 46%.

The five highest accuracies for trained novices were 58%, 59%, 60%, 64% and 75%. The five
highest performing untrained novices had accuracies of 57%, 60%, 61%, 61%, and 62%. Accuracy
and rating scores are depicted in Figure 7. Expert scores from Experiment 1 are included for
compatison.
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Figure 7. Mean accuracy, difficulty and confidence ratings for untrained novices, trained novices,
and experts. Data are split by matching and non-matching compatisons. Error bars are standard
errots. *s indicate significance levels of independent #tests between matching and non-matching
comparisons. * p<0.05 **p<0.01 *+*p<(.001
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For both groups of novices, there was a negative correlation between difficulty and confidence
ratings (1(198) = -0.87 and -0.85, p < 0.001, with and without training respectively), and a weaker
correlation between accuracy and confidence (7(198) = 0.31 and 0.33, p < 0.001, with and without
training) and between accuracy and difficulty (/(198) = -0.41 and -0.31, p < 0.001, with and without
training respectively). It is interesting to note that the latter correlation is higher for novices with
training than without training, perhaps indicating that they were beginning to appreciate the visual
features that make matching print pairs hatder.

The variance for experts” accuracy was less than that for either group of novices. This reflects the
neat-ceiling performance of the experts. The average difficulty rating was lower for experts (3.2/6)
than either group of novices (untrained: 3.7/6, (30) = 3.50, p < 0.01, trained: 4.2/6, £27) = 5.81, p
< 0.001). Thete was also a significant difference in difficulty ratings between the two groups of
novices (433) = 2.25, p < 0.05). Confidence ratings of experts (4.8/6) were also higher than those of
novices (untrained: 3.4/6, #37) = 7.26, p < 0.001, trained: 3.6/6, £39) = 7.18, p < 0.001). There was
no significant difference in confidence ratings between the groups of novices. For the experts there
was a significant difference between confidence ratings for match trials (4.9/6) and for non-match
(4.7/6; £99) = 1.98, p < 0.05)). No such asymmetry was found for the novices.

Signal Detection Measures

To assess patticipants’ sensitivity in disctiminating matches and non-matches, we submitted accuracy
scores from the assessed print pairs to a signal detection analysis (Green & Swets, 1966). The
average sensitivity for the expert group (¢’ = 2.64) was much higher than for the novices (4’ = 0.19).
There was no significant difference between the average sensitivity of untrained (4’= 0.17) and
trained (4’ = 0.21) novices. Despite low average sensitivities, the maximum sensitivity was 0.63 for
untrained novices and 1.36 for trained novices. However, only 2/18 trained novices had sensitivities
higher than the maximum untrained novice sensitivity.

Response bias (log ff) was computed for novices and trained novices. Mean bias (averaged across
subjects) was 0.01 and 0.04 respectively. There was no significant difference between the two groups
(434) = -1.19, p = 0.24). Average bias for the six highest petforming untrained novices was slightly
liberal (-0.06), while the average bias for the two highest performing trained novices whose
sensitivity was greater than the maximum sensitivity of untrained novices was slightly conservative
(0.12), but the difference between the two was not statistically significant (#6) = -2.13, p = 0.073)
perhaps because there were so few trained novices with high sensitivities.

Regression Analysis

The same crossed, logistic regression model was fit to the novice data as was used for experts in
Experiment 1. Similar procedures were followed to temove vatiable and simplify the model. The
results are shown in Table 6 with the coefficients from the fit to the expert data included for ease of
compatison. Ridge Sum, Mean Block Contrast (K), SD Block Contrast (LxK), DAEL (LxK), and
visibility of Cores (K) were selected as significant predictors for novices. Three predictors, Delta
(K), Ridge Sum, and DEAI(K), were selected in the trained novice model.

Table 6.

Expert Untrained Novice  Trained Novice
Fixed Effects Coefficient Estimate
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(Standard Error)
Intercept 3.385 (0.197) *** 0.521 (0.326) 0.628 (0.231) **
Area (K)
Area Ratio -0.471 (0.156) **
Delta (1) 0.798 (0.415)
Delta (K) -0.523 (0.246) *
Ridge Reliability
X
Ridge Sum 0.419 (0.154) ** 0.297 (0.112) ** 0.312 (0.096) **
Mean Block 0.534 (9.164) ** -0.540 (0.112) *+*
Contrast (K)
SD Block Contrast

@)
SD Block Contrast -0.451 (0.128) *** 0.194 (0.085) *

(LxK)

DAEL (K) -0.253 (0.099) *
DEAI (LxK) 0.334 (0.173) -0.213 (0.101) *

Core (L) 0.463 (0.251)

Core (K) -0.752 (0.373) *

Core (LxK)

Random Effects

Vatiance
Print Pair 2.154 0.809 0.658
Subject 0.077

*p<0.05 *p <001 *p <0001

‘Table 6. Coefficient estimates for the three groups of subjects: experts, untrained novices, and
trained novices, and for a high-performing subset of the trained novices. L — latent K — known print
L*K - interaction. Because a model selection procedure was used to select the most parsimonious
model, some parameters do not appeat in all models. Fixed effects appear at the top of the table and
random effects appear at the bottom. IFor random effects, the estimated vatiance is specifted. p
values correspond to significance tests on Wald statistics for each predictor, which are not shown in
this table. For mixed-effects models, it is difficult to determine the appropriate degrees of freedom,
so p values should be interpreted with caution. Instead, it may be more informative to examine
whether predictor coefficient estimates atre within two standard errors of the 0. Predictors are sorted
first in descending order of coefficient magnitude for experts and then by L, K, and L*K.

The root mean squared error (RMSE) was used as a measure of model performance on a withheld
dataset of 20% of the prints similar to Expetiment 1. RMSE was computed by making individual
accuracy predictions for cach print pair and then comparing this predicted average accuracy to the
observed average accuracy. Point estimates of the predictor coefficients and random effect terms
were used. RMSE for the expert, novice, and trained novice tésﬁng sets were 0.07, 0.25, and 0.21,
respectively. The larger RMSEs for both groups of novices indicate poorer model fits. Regression
predictors can still be interpreted as important contributors in predicting accutacy, but the model
should be interpreted with caution. The poor fit is not surprising given near-chance performance for
both groups of novices. However, it is interesting that despite these wotse prediction results, a
different, almost completely non-overlapping set of predictors is selected for in the trained novice
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model, and that the prediction performance is slightly improved relative to the untrained novice
model.

Experiment 3

Descriptive Statistics

Thitty-four examiners made a total of 1646 comparisons. Hach print pair was evaluated by a
minimum of seven distinct examiners. Average accuracy was 94.84%. Performance on matches was
90.00% while performance on non-matches was 99.75%. The lowest accuracy for any print pair was
10%. Thete were three print pairs out of 120 with an average accuracy less than 50%, three print
paits with an average accuracy between 50% and 75%, and 16 print paits with an average accuracy
between 75% and 100%. 98/120 print pairs had petfect accuracy.

Average examiner accuracy was 95.03%. The lowest accutacy was 81.82%, the highest was 100%.
Four examiners computed fewer than 10 comparisons, but none made any mistakes. Eighteen
examiners completed between 10 and 50 compatisons with an average accuracy of 93.55%. Twelve
examiners completed more than 50 comparisons with an average accuracy of 95.6%.

Of the 1646 total comparisons, 126 were labeled as inconclusive, of which 73 were matches and 53
were non-matches. Average accuracy for prints labeled inconclusive was 76%; average accuracy for
prints not labeled inconclusive was 96.38%. Average difficulty rating for inconclusive prints was
4.62; average difficulty rating for non-inconclusive prints was 2.27. For paits that were labeled
inconclusive by any examiner, an average of 23% of examiners labeled those prints inconclusive. At
most, 7/9 examiners rated a particular pait inconclusive. Of the 42/120 pairs that had at least one
examiner label inconclusive, five had 50% or more of examiners agree that they were inconclusive
with an average accuracy of 59.78%. The remaining 37 compatisons had fewer than 50% of the
examiners that rated them as inconclusive and had an average accuracy of 90.19%.

Half of the print pairs used in this expetiment were also used in Experiment 1. Petformance was
strongly correlated across the two experiments on that subset of comparisons (Spearman's rho =
0.45, p <0.001).. The accuracies for the two experiments are shown in Figure 8. Qualitatively,
accuracy for many pairs was similar across both experiments. However, for several pairs there were
marked differences. For two pairs, for example, accuracy in Experiment 1 was close to 50%, but was
near 100% in Experiment 3. Another print pair had an accuracy of near 10% in FExperiment 1 and
an accuracy of approximately 55% in Experiment 3. We have not yet examined the kinds of tools
that were used with each of these comparisons (see Conclusion for planned future analysis of these
data).
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Figure 8. Average accuracy for the 60 print pairs in both Experiment 1 and Experiment 3.

Response Time

Minimum response time was 2.4 seconds. Maximum response time was 91.5 minutes. Average
response time was 2.58 minutes. Average accuracy for comparisons that took less than a minute
(21.43% of all comparisons) was 97.12%; average accuracy for compatisons that took more than a
minute was 93.02%. Since users could leave the experiment window open (there was no time-out),
the response time does not necessarily reflect the amount of time spent evaluating the fingerprints.

Tool Use

Across all comparisons, 82.38% made some use of the tools. Average accuracy for compatisons
involving tool use was 95.86%, while average accuracy for compatisons without tool use was
94.62%. Average difficulty rating for comparisons on which tools wete used was 2.61; average
accuracy for comparisons without tool use was 1.72.

Minntiae were marked on 41.86% of the comparisons. On average, 3.74 minntiae were marked per
compatison. Average number of marked minutiae was 4.42 for comparisons rated inconclusive and
3.68 for comparisons not rated inconclusive. Accuracy was 95.3% for comparisons with no minuntiae
marked and 94.19% for comparisons with at least one marked. Average difficulty rating for
comparisons with no minutiae marked was 2.17 and 2.84 for those with at least one marked.

For the other tools, 79.65% of comparisons had the zoom tool used, 12.64% used rotation, 24.30%
had a brightness or contrast adjustment. In all cases, average difficulty was rated as higher for
comparisons that had tool use compared to those that did not (2.61 vs. 1.85, 2.90 vs. 2.39, 3.15 vs.
2.23 for each of the tools respectively).

Regression Analysis

The model fit in Experiment 1 was used to predict accuracy data from this experiment. The
predictions were based on the un-edited images, i.e., it did not take into account if examiners used a
tool to alter image properties like brightness or contrast. Since the model takes those features as
inputs, the model predictions need to be interpreted with caution. Subsequent analyses will
investigate how the model’s predictive performance changes when image featutes are computed
taking into consideration individual subject modifications.

Data were split two ways: First, by print pairs tested in Expetiment 1 and those that were new to this
expetiment, Second, by whether the pairs were rated as inconclusive by at least one examiner. Model
predictions are shown in Figures 9 and 10 respectively. While many of the paits used in Experiment
1 had qualitatively good accuracy predictions, six had observed petformances that were drastically
different from predicted performance. Many more new pairs had inaccurate predictions. However,
out of all of the paits that were presented in Experiment 1 and had inaccurate predictions, only one
had no examiners rate it as inconclusive (predicted accuracy: 79.3%, observed accutacy: 100%,
number of examiners: 10).
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Figure 10. Predicted vs. observed accuracy for print pairs in Expetiment 3 as in Figure 8. Pairs are
split by whether at least one examiner rated that pair as inconclusive (red circles) or whether no
examiner rated them as inconclusive (blue citcles).

IV. Conclusions

In Experiment 1, we evaluated expett performance on a fingerprint matching task. Experts were
highly accurate, committing few errors despite limited access to tesoutces and restricted viewing
time. Using a number of potential predictors derived from image processing algorithms, we were
able to identify, using regression analyses, several image characteristics predictive of expert
performance. Six features in particular were found to be important predictors of accuracy: Ridge
Sum, Area Ratio, visibility of Deltas in the latent print, Mean Block Contrast of the known print,
interaction between SD Block Contrast for latents and known prints, and the interaction between
DEAI (deviation from expected average intensity) for the latents and known prints. Taken together,
these features can explain 64% of the variance in performance accuracy on a novel set of print pairs
that were withheld from those used to train the model. A classifier derived from the full data set
identified the pairs on which at least one expert made a mistake with 91% accuracy, and a similar
model detived from 90% of the data classified novel paits with 75% accuracy.
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Many of the same image charactetistics were also predictors of subjective difficulty ratings,
confidence ratings, and response times. We also found that difficulty ratings, a subjective measure,
were moderately correlated with accuracy and could improve the performance of the classifier on
novel print pairs.

There are several interesting observations that can be made about the set of features that we found
to be predictive of accuracy (T'able 2). First, four of the six features were relational, in the sense that
they were calculated based on information from both prints in a comparison pair. This is 2 desirable
feature of the model since a particular print could arise in two separate comparisons (e.g., a latent
print compared to a matching and a non-matching print). In real world scenatios, a single latent
print may be compared to a many known prints. In cases where one of the prints in the study was of
very poor quality, such relational features might not matter. For example, if Mean Block Contrast
(K) is low (L.e., for a very washed out or very dark psint), then a comparison would be difficult
irrespective of some relational features such as Area Ratio. Conversely, if two prints do not share
Level 1 pattern type, they will not make for a difficult comparison regardless of the quality and
quantity of information in each. In general, however, error rates and difficulty seem likely to be
primarily characteristics of print comparisons, rather than individual ptints, as difficulty for actual
non-match comparisons will be most acute when the prints share significant similarities, and
difficulty for actual matches will be most acute when latent quality or quantity is limited ot
misleading. Results in our regression models support this idea.

Second, the features within the model correspond to many types of information content. Mean
Block Contrast (K), SD Block Contrast (L x K), and DEAI (L x K) capture properties of the image
itself (i.e., dark or light, uniform or not). Area Ratio and Delta (L) reflect large-scale or configural
{Level ) characteristics of prints, and Ridge Sum relates to visibility of fine detail in the image such
as Level II features (see Introduction). These outcomes fit broadly with the idea that fingerprint
examiners access different kinds of information in making compatisons and that basic image
characteristics determine the detectability of relevant features and patterns.

Third, although not our primary result, the signs of the coefficients provide appealing interpretations
and verify our expectations about the negative impact of low quality prints. That high contrast and
clatity of ridges are predictors of accuracy should not be surprising. The DEAI measure increases as
the average pixel intensity approaches 127.5, the mean expected pixel intensity for an image that
contains 50% white and 50% black pixels. We assumed that this proportion would cotrespond to
greater clarity, since a mostly light or dark image could be difficult to analyze. The positive
coefficient found for this measure in the accuracy model indicates that as the proportion of white to
black pixels approaches 0.5 in the latent and known print, accuracy incteases. Visibility of deltas in
the latent image also had a positive effect on accuracy perhaps because they provided otienting
information, making it casicr to match relative locations on the latent and known print. Accuracy
decreased as SD Block Contrast (L x K) and Area Ratio increased. When SD Block Contrast is high
in both the latent and known print, accuracy is low. In general, high variability in Block Contrast
picks up variable image quality across image regions (e.g., due to gaps or smudging in portions of a
print). In smudged regions, pixels would be uniformly datk, while in clear regions pixel intensity
would be more variable, leading to higher contrast measures in those areas. If an image were more
uniform in pixel intensities, it would have lower variability in contrast across regions and therefore
lower SD Block Contrast measures. Area Ratio had a latge, negative coefficient. This at first seems
countetintuitive; higher area ratios tend to correspond to larger areas of latent prints. Larger areas,
however, may make comparisons more difficult by making it mote difficult to identify distinctive
tegions of the image. Since non-matching known prints wete chosen by submitting the latents to an
AFIS system, the non-matches likely shared many features. If experts were only shown a small latent
tegion, it might have been easier to compate that region to the cotresponding region on the known
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print and quickly exclude mismatched pairs as compared to a larger latent image with mote
accidentally matching regions.

In addition to being able to predict accuracy, it may be impottant to identify which comparisons are
likely to yield an error and therefote may require more serutiny. To address this issue, we created a
classifier that sosted the print paits into ones that had perfect accuracy (so-called “petfect pairs™)
and ones on which at least one expert made a mistake (“non-petfect pairs™). The classifier was able
to cotrectly sort the pairs with 91% accuracy on the training set and 75% accuracy on the testing set.

Difficulty ratings wete used in two ways to add to the modeling results. We used difficulty rating
itself as a predictor of accuracy. Difficulty ratings improved the fit of a model trained on all of the
print paits, but did not improve the predictive power of 2 model on a testing set of withheld prints.
Classification performance, however, was improved. While ratings are not objective, there was
nevertheless a moderate cortelation between them and accuracy, suggesting that experts were aware
of which comparisons were difficult, an issue we ate also exploring in a paper in progtess. Qutside
the expetimental setting, it may be impractical to expect to be able to get a group of expetts to
provide ratings.

Difficulty ratings, confidence ratings, and response times wete also evaluated as separate dependent
measutes. Because these measures correlated moderately with accuracy, we expected that similar
features should be selected for when the same features were used to predict other dependent
measutes. Four of the six features that were significant predictors in the accuracy model were also
significant predictors in the other models, A fifth feature, SD Block Contrast (K), which was
included as part of an interaction term in the accuracy model was also included in the model of
response time. Some features, such as visibility of cotes, were significant predictors in the other
models but not in the model of accuracy. Cotes and deltas are global features. Their presence or
absence can be used as a quick measure of assessing difficulty. However, global features on their
own are not sufficient to make a comparison. Accuracy, therefore, depends to a greater extent on
image quality, relational information, and ridge information.

These results suggest that physical characteristics of fingerprints, measured using automated image
processing methods, may be valuable in predicting comparison difficulty and error rates for print
paits. Given that the present work is the first effort we know of to systematically predict etrors
from physical characteristics of print pairs, the predictive results ate highly encouraging, Validation
across latger data sets would be desirable for practical use of a predictive model such as the one
derived here. Further developments along these lines, along with continuing progress in
characterizing the physical quality of prints (e.g., Pulsifer et al., 2013), will likely prove to have
practical value in quantifying the likely evidentiary value of expett assessments of fingerprint
matches.

While these results on modeling print-pair difficulty ate encouraging, there are also many differences
between the paradigm used in the present study and the actual process of fingerptint comparison.
Experts typically have unlimited evaluation time and access to image processing tools that were not
available in the experiment described here. In addition, examiners typically are not in a “forced-
choice” situation, and may decide that a real-wotld comparison is inconclusive. (Fxperiment 3,
however, does attempt to correct in part for these limitations.)

Despite these limitations, there are several important dimensions to these results. The results show
that even under constraints, experts wete highly accurate. More than half of the print pairs had
perfect accuracy, even in circumstances where the examinets’ time was limited, theit access to tools
constrained, and they were not permitted to select the option of “inconclusive”. Relatively few
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studies have examined expert performance in fingerprint matching tasks, and this study adds to that
body of research. It is possible, however, that error rates in forensic laboratory settings ate lower
than those we observed. It is also possible that other aspects of real world settings - like the danger
of cognitive bias, the pressure of casework, and knowledge of extraneous information about the case
— could elevate error rates as compared to experimental conditions. Care must be taken not to
generalize too quickly from experimental settings, but nonetheless, such experiments can reveal a
great deal about examiner performance, albeit under constraints.

Experiments in ecologically valid settings are difficult to conduct. In such settings, there are many
factors that may improve accuracy (such as more time to conduct the compatrisons, verification
checks, etc.), as well as factors that can reduce accuracy (such as biasing influences from extraneous
contextual case information, see Kassin, Dror, & Kukucka, 2013; Dror & Rosenthal, 2008). Given
the significant differences between our experimental conditions and ecologically-valid fingerprint
identification, we wish to reiterate that the point of the experiment reported here is not to measure
such error rates, and it would be a mistake to take these data as direct evidence of a specific error
rate for the field (Koehler, 2008). Rather, we are intetested in identifying the features that correlate
with difficulty, in order both to understand what features of print paits affect difficulty, and to begin
to understand how error rate might »ary with comparison difficulty.

Consistent with several previous studies, very large performance differences were observed in
Experiment 2, between experts and novices. Experts committed relatively few esrors (approximately
9%), while novices performed nearly at chance. Experts outperformed novices despite that fact that
they were under time constraints and did not have access to typical tools (i.e., image manipulation
software, compass, or magnifying lens). Novices who watched a brief training video prior to the task
did not perform differently overall (54% accuracy); however, trained novices committed fewer false
alarms than untrained novices and, in general, were more consetvative in their responses. In this
mannet, they were, to a limited degree, in between untrained novices and expetts in at least one
tespect: untrained novices had many more correct answers when the prints actually matched (hit)
while experts had more correct answers when the ptints were from different sources (correct
tejections). Trained novices performed like neither of these other groups, in that they had similar
performance for both kinds of comparisons. This may reflect a shift in bias regarding an implicit
‘default’ conclusion — when novices see two prints with a lot of information, they may be biased to
say that they match, being at 2 loss of what parts of the image are relevant for comparison. Expetts,
on the other hand, have a better sense of what features are important for making compatisons and
also may be biased against false alarms (which in real world settings would result in a false
conviction), saying that two prints do not match when they are unsure and therefore leading to more
cottect rejections. This possibility was reflected in higher confidence ratings by experts for
comparisons of matching prints than for non-matching prints. Ttained novices may have picked up,
even on the basis of a very short video training, some idea of what information to focus on in the
ptint and so become less likely to say that two prints match when they are unsure. Furthermore,
several trained novices greatly outperformed untrained novices, with one having an overall accuracy
of 75%, while the highest untrained novice accuracy was 62%.

Thete were also marked differences in confidence and difficulty ratings between both groups of
novices and experts. In general, experts were mote likely to rate ptints as easy and to have higher
confidence in their ratings. The short training video did not have an effect on confidence ratings
among novices, but trained novices did rate compatisons as more difficult overall than untrained
novices. This confirms the notion that novices were guessing when it came to comparisons, which is
why their accuracy was at chance. Tt was not surprising that the short five minutes training video did
not drastically improve petformance. What was surptising is that even such a short training session
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made the subjects more attuned to the difficulties of comparisons, pethaps by directing their
attention to relevant features so that they became more aware of the difficulty of the task.

The same model-fitting procedute as in Experiment 1 was used to fit accuracy data for trained and
untrained novices. Ridge Sum was the only predictor that appeated in all three models. Area Ratio
was only selected for in the expert model. Mean Block Contrast (K), SD Block Contrast (LxIK) and
DEAI (LxK) appeared in models for both experts and untrained novices, but with opposite signs.
This may mean that novices did not use the information approptiately. Featutes of images that
notmally help experts may have served to confuse novices. An overabundance of information may
overwhelm a novice observer and lead them to incorrectly treat two complex visual stimuli as
sufficiently similar. The fact that the predictots ate not selected for in the model for trained novices
may indicate that the training helped novices use the information in fingetprint images more
appropriately. High information content did not bias them in the same way to label a comparison as
a match. However, the model fits were much worse for both trained and untrained novices
compared to experts, suggesting that the model did not provide a good fit to the data. This is not
surpsising given that accuracy was at chance for both groups.

Overall, we confirm that novices are very poor at fingerprint compatison, at least when tested on
reasonably difficult exemplars. Similar to Tangen et al. (2011), we found that untrained novices had
better performance for matches than non-matches. However, their match performance was not as
high as that observed by Tangen et al., (62% vs. 75%). Averaged actoss match and non-match
compatisons, novices in Experiment 2 performed at chance. Watching a short training video
eliminated the difference in performance between matches and non-matches and slightly shifted bias
for a subset of the subjects. This suggests that the advantage for matches for novices is due to a
biased preference to label a comparison as a match. It is interesting to note that this pattern is
reversed for experts, Experts have greater accuracy for non-matches than fot matches. An opposing
bias may exist for experts because they are mote awate of the high cost of making an incorrect
identification and would prefer to err on the side of caution; even under experimental conditions
that instruct them to make their best guess, they may not view a false positive and a false negative as
equivalent errors. Since the bias disappeared for trained novices, the training video may have
emphasized the importance of correct identification, the difficulty of compatisons, and the high cost
of errors. As a result, trained novices may have been more reticent to call a comparison a match by
default. The first and most rapid effect of training may therefore be to alert the observer to
structures in a fingerprint image that can be used to disctiminate two images. As with other
perceptual learning domains, more exposute is requited to leatn to exploit fingerptint information
content to make comparisons. This demonstrates that fingerprint examiner expertise is a petceptual
learning domain and is therefore likely amenable to the same kinds of training methods that have
been used in mathematics and category learning (e.g., Mettler & Kellman, # press; Thai, Mettler, &
Kellman, 2011}.

Farther studies need to be conducted to trace the effects of perceptual learning on accuracy and
bias. A long-term study that tests examiners through vatious stages of their training might be able to
identify gradual changes in accuracy. Changes in accuracy may cortespond to a gradual reweighting
of predictor variables. Examiners just beginning theit training may give weights to image features in
a mannet similar to novices. As training progresses, a gradual shift of which vatriables matter most
fot accuracy may occur until weights match those of examiners in Experiment 1. It would be
valuable and interesting further research to examine how quickly these shifts occur and how
different kinds of training might affect them.

Experiment 3 sought to extend the findings of Experiment 1 by testing examiners within
substantially more realistic settings for fingerptint comparison. Examiners wete given unlimited time
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to make their comparisons and were provided with an array of image processing tools similar to
those they would normally have access to in the course of their work. In addition, experts were
given the opportunity, after giving a conclusion, to label a print pair as “inconclusive”, an option
they were not given in Experiment 1. However, even when a pair was labeled inconclusive, experts
were stll required to provide a “match” or “non-match” judgment, which was meant to reflect their
best guess. In this sense, our protocol was quite different from laboratory practice, in which an
‘inconclusive’ determination means that the examiner does not offer any further speculation about
whether the print pair does or does not share a common source. But this approach gave us
important clues about the relationship between performance and an indication that a print pair
lacked the quality to warrant evaluation, both for an individual examiner, and in aggregate.

Error rates in Experiment 3 were similar to those in Experiment 1 and those repotted in other
studies (e.g., Tangen et al., 2011). This is a valuable finding, because it suggests that error rates in the
first experiment cannot therefore be solely attributed to lack of resources or time to petform
comparisons. There was wide variability in the number and types of tools used by expetts. Tool use
was often, but not always, correlated with greater difficulty and worse perfortnance. Intuitively, this
may have occutred because more difficult comparisons necessitated additional image manipulations,
but the use of manipulations was not associated with gready improved accuracy.

There was very little agreement on which compatisons wete inconclusive or not. One possible
reason for this discrepancy is variation in expertise among examinets. Another reason could be
variation in decision critetia — some examiners may be more willing to label a print as a match or
non-match rather than inconclusive than others. I differences are due to decision criteria, then one
may be able to determine objectively whether there is in fact enough informaton to make an
identification. For example, if 2 model predicts very high accuracy for a particular comparison, then
this may be used to encourage examiners to spend extra time evaluating a comparison before
determining that there is insufficient information to make a match / non-match decision. That is, it
may be possible to objectively determine whether there is or is not sufficient information in a
particular print pair. This would allow one to judge whether a determination of inconclusive is
correct or not. We ate still actively exploring how to incorporate inconclusive judgments into the
model and how they relate to measures of accuracy and performance.

The model fit in Experiment 1 was used to generate predictions for comparison accuracy in
Expetiment 3. While the model was successful in predicting the accuracy for many comparisons (see
Figures 9 and 10), there were several compatisons for which the model made poor predictions. A
close examination of those compatisons revealed that all but one of them were marked as
inconclusive by at least one examiner in Experiment 3.

There are sevetal alternative ways of analyzing the data that are still under investigation, First, as
mentioned eatlier, features could be recomputed based on the final settings instead of using initial
values. For example, if contrast was manipulated, it may be more approptiate to use the final
contrast setting since this reflects the status of the image at which the identification was made. Using
the final settings would mean that the tested images may not directly correspond to those used in
Lixperiment 1, since the performance predictions of the model defined in Experiment 1 were based
on the original image settings. This would result in new model predictions for a majority of the
tested prints. However, if only one subject made a patticular contrast adjustment then there would
only be that single evaluation from which accuracy is computed. This would make it difficult to
know what ttue average accuracy would be for a large group of experts and one reason why we did
not begin with this analysis. It is interesting to note that perhaps the sequence of image
manipulations might collectively be informative for predicting accuracy. For example, seeing the
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same image at several contrast settings may imptove petformance compared to seeing an image at
just one setting.

Second, instead of using the predictor weights from Expetiment 1, a new model could be fit to these
data. ‘The weights may be different due to the addition of manipulation features and added
evaluation time. For example, if the ability to mark minutiae or the number of minutiae marked was a
very important feature in determining accuracy, the relative importance of the other predictor
variables may have been degraded. Similarly, Area Ratio may matter less when more time is provided
to compare two itnages; with little time, a smaller latent area might focus examiner attention in a way
that larger areas would not. Given unlimited time, howevet, regardless of whether the latent area was
small or not relative to the known print area, examiners could have compared sections of it at
leisure. We would expect to find that many of the same predictors that were important predictors of
accuracy in Experiment 1 continue to be so for this expetiment. This would confirm that the
originally identified image features are indeed relevant for fingerprint identification. How much
those features matter, relative to one anothet, might depend on the exact manner in which the
compatison task is set up.

Finally, the manipulations in Expetiment 3 might be used to generate new features that reflect
examiner behavior. Number and relative spacing of marked minutiae, degtrees of image rotation,
number of image contrast or brightness adjustment steps, or numbet of levels of zoom might
interact with the original set of image features. For example, when Ridge Sum is low (clarity of
ridges is poot), marking minutiae may correlate with improved accuracy, but may not matter when
Ridge Sum is high. Tt is important to emphasize that such featutes are not properties of the image
themselves, but decisions made by examiners. They cannot therefore be used alone to determine the
difficulty of a print, but they may be informative about what kinds of behaviors and procedures are
most beneficial to generating a correct identification.

In addition, we may be able to offet insight on the relationship between ‘inconclusive’
determinations and performance, as well as the relationship between examiners’ subjective
petceptions of difficulty and their objective performance. We are engaged in further analysis on both
of these questions as well.

Policy Implications and Future Research

Experiment 1 was an important step in “unpacking” etror rates and their relationship to difficulty,
an endeavor that has great importance to forensic science and the legal system. The mere fact that
some fingerprint comparisons ate highly accurate whereas others are prone to ertor has a wide range
of implications. First, it demonstrates that error rates ate indeed a function of comparison difficulty
(as well as other factors), and it is therefore very limited (and can even be misleading) to talk about
an overall “error rate” for the field as a whole. In this study, more than half the prints were
evaluated with perfect accuracy by examiners, while one print was misclassified by 91 percent of
those examiners evaluating it. Numerous others were also misclassified by multiple examiners. This
experiment provides strong evidence that ptints do vary in difficulty and that these variations also
affect the likelihood of error. Even though it was a logical assumption that print comparisons would
have this quality, establishing this point empitically has significant value. Second, this study lays
down a foundation for finding objective print characteristics that can quantify the difficulty of a
compatison. The model we offer provides both evidence for what specific visual criteria seem to
affect difficulty, as well as a model for combining these ctiteria to best predict accuracy. This model
illustrates the benefits of creating objective measutes of difficulty for print pairs, which could be
substantially more efficient and consistent than more subjective approaches to assessing difficulty. It
also lays the groundwork for further study that can examine the relationship between examiners’
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subjective assessments of difficulty (Neumann, et al, 2013) and a more objective approach to
measuring difficulty of compatisons.

Expetiment 2 confirmed the differences found by prior research between novices and experts.
Novice perfortance was essentially at chance and we obtained similar measures to those found by
Tangen et al. (2011). Interestingly, we found that even exposure to a shott training video seems to
alter the way that novices approach the assessment task (though it did not significantly alter their
overall accuracy rate). We also found that the image featutes used by novices were different than
those used by experts. This suggests that fingerprint expertise is a perceptual leatning process that
tesults in the improved detection of structure and relevant information in fingerprint images.
Consequently, procedures that promote perceptual learning (such as sequencing techniques during
training; Mettler & Kellman, 2014), may be leveraged to improve training efficiency for fingerptint
examiners.

Expetiment 3 demonstrated that error rates in more realistic eavironments were generally
compatable to those in Experiment 1. This is a critical finding because it means that valuable
expetiments with fingerprint examiners can potentially be conducted rapidly, in controlled
environments without needing to rigorously replicate the environmental settings in which
identifications are normally made. This can save a great deal of time, effort, and money for future
research. While realistic, rigorous examination methods are of course preferred in evaluating
cxpettise, one may also be able to generate smaller, less realistic, but similarly accurate testing
materials for use during training, for example in creating an online training curriculum. The relative
consistency of results between Dxperiment 1 and Experiment 3 suggests that while greater ecological
validity is always to be preferred, valuable information may be acquired through experiments with
design constraints as well. Experiment 3 also revealed two additional importtant findings: (1) a lack
of consistency among examiners about which prints were seen to be “inconclusive” and (2) poorer
aggregate performance on prints rated “inconclusive” by anyone. This raises interesting questions
for further research, as well as important policy questions about where the line between
‘inconclusive’ and a match conclusion should be drawn.

Consider: Of the 42/120 pairs that at least one examiner labeled inconclusive, five had 50% or more
of examiners agtee that they were inconclusive, with an average conclusion accuracy of 59.78%. It
would scem relatively clear that if we could identify these comparisons in advance, via difficulty
ratings, these would be comparisons that ought not to be assessed by examiners at all, given the
susbstantial risk of error and the aggtegate performance only modestly above chance. But the
remaining 37 comparisons that some examiner(s) labeled inconclusive had an average accuracy of
90.19%. That is, to be sure, still a substantially higher error rate than that achieved for the prints no
one deemed inconclusive, but it is also quite a high accuracy rate compared to many human
endeaors. Would the better practice be for these prints, could they be identified in advance by theit
visual metrics, not to be assessed or no conclusion offered? Orisa roughly 10 percent chance of
error low enough that we would rather have this information than otherwise? Or would it, perhaps,
be best to design some special, distinct examination process for this category of prints, to gain the
benefits of examiners’ best judgments, while tecognizing that their high degree of difficulty makes
them unusually error-prone? We are still in the process of assessing the relationship between
objective visual characteristics and examiner’s ‘inconclusive’ determinations, but this example
fllustrates how and why objective mettics (either alone, or combined with subjective measurements
by examiners) may help the design of appropriate laboratory protocols and more data-driven
approaches to the field and its use of information.

Overall, a more sophisticated understanding of the relationship between error rate and difficulty
should also be extremely important for the courts in weighing fingerprint evidence (and has been
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highlighted by the NAS (2009) inquiry into forensic science). Coutts are instructed, when assessing
expert evidence, to focus on the “task at hand”, and this research helps to show that fingerprint
examination may vary in difficulty in ways that may be relevant to its evaluation as evidence
(Daubert vs. Metrell Dow Pharmaceuticals, 1993; Kumho Tite Co. vs. Carmichael, 1999). More
nuanced assessments of fingerprint task difficulty might, for example, affect how a judge
understands admissibility of that specific conclusion, or what degree of certainty the expert will be
allowed to express, or it might impact the weight given to a specific match conclusion by the fact-
finder (Faigman, Blumenthal, Cheng, Mnookin, Murphy & Sanders, 2012). It is possible, for
example, that if we could accurately identify the most difficult comparisons, they could be made use
of for investigative purposes but not used as evidence in the courtroom. In this way, it is possible
that many prints which currently are deemed ‘inconclusive’ -- and may indeed be difficult enough
that they are significantly more prone to error -- could be used to provide valuable, even if more
error-prone, information that could assist investigations, rather than have their analysis entirely
forgone.

While our model requires further testing, it is possible that it could be piloted in such a way. To be
sure, our model does not yet offer the granularity to, say, associate etror rates with a set number of
distinct levels of difficulty, it could be adapted to examine comparisons and to predict whether they
have an unusually high or low difficulty level. The implications of these findings thus have
relevance both to the court and more broadly, in that they provide vital insights that can
considerably enhance the procedures used in forensic laboratoties. Similar to procedures for medical
triage, the need for different procedures and checks can be made to fit the difficulty of a
compatison.

The understanding of what makes some compatisons more difficult than others also has
implications for the selection and training of fingerprint examiners. Duting selection, benchmarks
and skill sets could be set as criteria to ensure candidates have acquitred the necessary cognitive
abilities needed to petform their job adequately. In addition, in evaluating the significance of etrors
for trainees, better information about difficulty level will be of great assistance. Trainees who make
mistakes on simpler stimuli can be distinguished from those whose etrors occur only on more
difficult materials; for evaluating performance, all errors are not — and should not be treated as —
equal.

While further research is clearly necessary to build on these results, this research therefore provides
significant steps forward for helping to establish that error rates are related to difficulty; for
beginning to provide validated evidence for what visual dimensions of fingetprint comparison paits
are associated with difficulty; and for helping to tease out both examiner’s metacognitive abilities
and the substantial degree of examiner expertise in this domain.
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Article

Footwear Examinations: Mathematical
Probabilities of Theoretical Individual
Characteristics

Rocky S. Stone

Albuquerque Metropolitan Crime Laboratory (retired)
Albuquerque, NM

Abstract: The trend in the forensic sciences favors objectivity
over subjectivity, Courts in the United States are becoming increas-
ingly hesitant to accept the opinion of an examiner who states, “It’s
a ‘match’ because I say it’s a ‘match’, Objectivity, in most cases, is
reinforced by quantification. The individual characteristics that appear
on a shoe print or shoec impression can be quantified using two pri-
mary variables. Their location on the print and their configuration and
orientation yield measurable, discriminating data values. Theoretical
types of individual characteristics that are found on shoe prints are
described and discussed, and a hypothetical model is presented with
probability estimates applied to quantify the likelihood of occur~
rence of the characteristics. With marks or combinations of marks
of reasonable complexity, the magnitudes of the resultant numbers,
though entirely abstract and based upon conservative assumptions,
are remarkable,

Introduction

The presence of accidental, random defects on a shoe leaving
& print* may allow an examiner to “positively identify” that
particular shoe to the exclusion of all other shoes as having
created the print. The assumed underlying premise is that
nature never repeats itself. When physical entities, both natural
and man-made, are examined in sufficiently fine detail, the

* Throughout this discussion, unless specifically differentiated, the
term “print” will be used to refer to both three-dimensional shoe
impressions and two-dimensional prints.
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Statistical Discrimination of Footwear:
A Method for the Comparison of Accidentals
on Shoe Outsoles Inspired by Facial

Recognition Techniques

ABSTRACT: In the field of forensic footwear examination, it is a widely held belief that patterns of accidental marks found on footwear and foot-
wear impressions possess a high degree of “uniqueness.” This belief, however, has not been thoroughly studied in a numerical way using controlled
experiments. As a result, this form of valuable physical evidence has been the subject of admissibility challenges. In this study, we apply statistical
techniques used in facial pattern recognition, to a minimal set of information gleaned from accidental patterns. That is, in order to maximize the
amount of potential similarity between patterns, we only use the coordinate locations of accidental marks (on the top portion of a footwear impression)
to characterize the entire pattern. This allows us to numerically gauge how similar two patterns are to one another in a worst-case scenario, i.e., in the
absence of a tremendous amount of information normally available to the footwear examiner such as accidental mark size and shape. The patterns were
recorded from the top portion of the shoe soles (i.., not the heel) of five shoe pairs. All shoes were the same make and model and all were worn by
the same person for a period of 30 days. We found that in 20-30 dimensional principal component (PC) space (99.5% variance retained), patterns from
the same shoe, even at different points in time, tended to cluster closer to each other than patterns from different shoes. Correct shoe identification rates
using maximum likelihood linear classification analysis and the hold-one-out procedure ranged from 81% to 100%. Although low in variance, three-
dimensional PC plots were made and generally corroborated the findings in the much higher dimensional PC-space. This study is intended to be a start-
ing point for future research to build statistical models on the formation and evolution of accidental patterns.

KEYWORDS: forensic science, footwear, shoes, multivariate, principal component analysis, linear discriminant analysis, pattern recogni-

tion, accidental marks, accidentals

Footwear impression evidence is present at many crime scenes
and can be found visible or latent on a variety of surfaces such as
glass, carpet, paper, wood, dirt, concrete, tile, and snow (1). Shoe
impressions can be more of a challenge for a criminal to avoid
leaving than fingerprints, and like fingerprints, they can link a per-
son to a crime scene (1). Nevertheless, footwear impression evi-
dence is much less utilized because it is more difficult to spot and
collect and more prone to contamination. Also, the ability to make
positive identifications between a suspect’s shoes and crime scene
impressions is not as well known to those in criminal law (1).

Shoe impressions can be identified based on class characteristics
like manufacturer, brand, model, and shoe size (2). There are thou-
sands of different shoe designs for men and women, as well as a
variety of sizes. The rapid rate that shoe designs are replaced adds
to the discriminating power of shoe print evidence. Aside from
design, the possible imperfections, variations, and random
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characteristics infroduced during the manufacturing process can sig-
nificantly reduce the number of possible candidates in the identifi-
cation of an unknown impression (1).

Accidental characteristics (accidentals) are nonreproducible cuts,
tears, punctures, and the like that accumulate on the outsole as the
shoe is worn (2). Much like minutiae on fingerprints, footwear
accidentals are identified based on agreement in a feature’s appear-
ance and position. Fingerprint minutiac, however, only have a finite
number of descriptors. The possible shapes of a shoe accidental
mark are infinite (1,3,4). Hence, if the shape of an accidental has
enough complexity, it is theorized that just one would be enough
to make a positive identification (1).

While it is a strongly held belief by many footwear examiners
that the patterns of accidental marks on shoes are unique, this is an
inductive conclusion that has not been thoroughly studied using
controlled experiments. This poses a problem in the wake of the
Daubert decision in which the U.S. Supreme Court rejected the
Frye “general acceptance rule” concerning the admissibility of cer-
tain evidence submitted as scientific (5,6). As a result, various
forms of physical evidence have been the subject of Daubert and
other admissibility challenges. While the use of footwear impres-
sion evidence in criminal trials has recently been upheld by the
United States Court of Appeals in a 2006 Daubert challenge case,
future challenges are inevitable (7).

Taken literally, the adjective “unique™ applicd to accidental pat-
terns means that there is one and only one pattern like it in the

© 2009 American Academy of Forensic Sciences
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world. This is a conclusion impossible to prove unless the acciden-
tal pattern of every shoe in use in the world is known at every
point iIn time. With such a seemingly impossible task at hand, ie.,
to “prove the uniqueness” of an accidental pattern, does this mean
all is lost? OF course not! There exists a vast array of statistically
based methodologies which, when given complicated pattern data,
can be used to gauge similarity in a statistical sense. Many of these
methods are known to be robust even using small to medium sam-
ple sizes (8,9). Other methods, given enough data, shouid be able
to yield random match probabilities (9-11). Unfortunately, few
attempts have been made to apply actual mathematical formulas to
the study of accidental patterns. A way to buffer against admissibil-
ity challenges (e.g., Daubert challenges) is to analyze the data with
statistical methods. Once implemented, these forensic pattern com-
parison systems can be extensively tested and identification error
rates can be established, In this way, one can generate quantitative
comparisons based on sound scientific (statistical) principles and
lend objectivity and reliability to a field seen largely as subjective.

Everett, Lambert, and Buckleton have suggested a Bayesian
approach to interpreling footwear marks (12). They advocate apply-
ing their method to footwear identification when the acquired fea-
tures alone are not overwhelming enough to warrant a sound
positive identification. Another study was performed by Geradts
et al. who used algorithms to construct a footwear database called
REBEZO in cooperation with the Dutch police. The data consisted
of shoeprints found at crime scenes, shoes obtained from suspects,
and stere-bought shoes (13,14). The algorithm segments shoe sole
profiles and attempts {o identify and classify distinguishable shapes
for comparison against a database of known shoe sole profiles, The
authors note that currently the system has difficulty comparing
complex shapes and that more research is needed (15).

Computational models of facial recognition have proved extremely
successful in criminal investigation and security systems. These
numerical pattern comparison techniques are fast, reliable, and rela-
tively easy to understand. While there are some differences from one
model to the next, they all attempt to represent a facial image as a
data set which is compared o other data sets stored in a database
{16-18). Such data sets will obviously be very complex, and distin-
guishing between them requires use of a computer that can sort
through vast amounts of data and perforrn complicated pattern recog-
nition tasks. Using computers in pattern recognition has the added
benefit of lessening human bias introduced in gauging how “similar”
two patterns of data are to one another (10,11,15,18,19).

In facial pattern recognition, a particular scheme stemming from
information theory decomposes the data set representation of an
image (a facial image, an accidental pattern on a shoe sole, etc))
into a smaller set of characteristic “features” known as principal
components {PCs) (20,21). Principal component analysis (PCA)
essentially eliminates information which varies little within all the
accidental patterns included in the analysis, and captures the varia-
tion within the data independently of any human judgment. The
method accomplishes this task using new statistically uncorrelated
and orthogonal variables constructed from the old variables. PCA
serves {o reduce the dimension of the data, which can be enormous,
to a manageable level,

The purpose of this shidy is to use facial pattern recognition
techniques to demonstrate that accidental patterns found on foot-
wear oufsoles can be compared against each other within a statisti-
cal pattern recognition framework. Using such a framework we
then show how identification error rates of the system can be esti-
mated. In this study, we only used the accidental pattern from the
top of the sole, and only the positions of the accidentals were
recorded. Size and shape were not used in comparisons due to the

fact that characteristics having amorphous properties are very
difficult to treat computationalty (22,23). While our programs are
evolving to take these features into account, as of vet, they cannol,
Second, our minjmal treatment of the accidental patterns examined
in this smdy allow us to show how robust statistical discriminations
can be made even with a minimal amount of information, ie.,
using only the distribution of the accidentals on the top sole
impression,

In this study, five pairs of shoes having the same manufacturer
and model were worn by the same person for a peried of 30 days
each, Although there have been studies monitoring the appearance
of accidental characteristics over time (2), there have been none on
the same model shoe wom by the same person. Under these cir-
cumstances, one would expect the greatest positional agreement of
accidentals as many of the usual variables will be constant such as
manufacturer, material, foot morphology, weight distributton, walk-
ing pattern, and routine. Aside from observing how similar the
footwear patterns will be under these conditions, this study will
provide a starting point for futare research upon which to build sta-
tistical information on the formation and evolution of accidental
patterns,

Methodology

Five pairs of ladies Lands’ End, size 7 med ({model
D86 M30400 565) shoes were worn for a period of 30 days each.
An initial shoe print was recorded before wear, Shoe prints were
subsequently recorded on days 1 through 7, 14, 16, 18, 20, 24, 28,
and 30. A total of 15 patterns were recorded for each shoe. Four
replicates were made of each print for evaluating repeatability and
because the first print made was always too dark to sec fine detail.
The naming convention used for each shoe distinguished order of
pair worn and left or right. For example, the first shoe pair worn is
called Pi. The left shoe of P1 is called PIL and the right shee is
calted P1R.

Unfortunately most of the accidental patterns for the left shoe of
pair 5 (PSL) were not readable and thus all the patterns for PSL
were dropped from this study. Hence, there are nine shoes in this
study: PIL (shoe 1), PIR (shoe 2), P2L (shoe 3), P2R (shoe 4),
P3L (shoe 5), P3R (shoe 6), P4L (shoe 7), PAR (shoe 8), and PSR
{shoe 9.

Generation of Outsole Prints

The magna brush method was used to record the prints on to
8" x 117 white copy paper as it is found to be superior to dusting
fingerprint powders when dealing with nonsmooth and porous sur-
faces (24). Black magnetic flake powder (all pariicles magnetic)
was used over magna powder (iron particles mixed with fine pow-
der) as it enhances wet prints better, and produces much fower
background and smudge levels (24).

Recording Accidental Marks

Only the position and quantity of accidentals were considered in
this study. Neither their size nor morphology was evaluated. Acci-
dentals were recorded using a charting method adapted from the
Abbott grid locater and the method adapted from a paper involving
statistical analysis of barefoot impressions performed by Kennedy
et al. (25-27). Figure 1 shows the grid used in this study to record
the accidental patterns,

Using the prints from the magna brush technique, the best repli-
cate from each interval was selected. Two lines were drawn tangent
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FIG. 1—Grid used to record the accidental patterns.

to the widest part of the print on the ball portion of the shoe’s sole,
and another two fines tangent to the widest part of the print on the
heel of the shoe. The midpoint between each of these was marked.
Another line was made perpendicular to the tangent lines, directly
under where the shoe pattern of the sole ended. The two midpoints
of the ball and heel were then connected.

The prepared grid (cf. Fig. 1} was printed on {ransparent film so
that it could be laid directly over the shoe print, The X axis of the
grid was placed over the perpendicular line drawn below the end
of the sole’s pattern. The Y axis was placed over the line that con-
nects the two midpoints. In this way, all accidentals in the ball part
of the shoe could be characterized. In this siudy, only the top por-
tion of the shoe sole was examined, not the heel.

The number of accidentals found in each quadrant was recorded
into charts for each shoe and day of wear. In order for an acciden-
tal to be counted it must have appeared clearly in more than one
replicate. If an accidental extended into two different quadrants, the
quadrant was selected in which the majority of the accidental was
found. Because of wear and variations in the manufacturing process
and in making each print {the amount of oil used, how one stepped
on the paper, etc.), the shoeprint proporlions were not exactly the
same for each print. Thus, using the above method of preparing the
print for the transparent grid may yield different results (the area
on the sole in which the boxes lay may be different). In order to
deal with this problem a shoeprint for both the right and left foot
was selected to be used as a master template whose proportions
were used for all other prints regardless of their own proportions,
In this way, the boxes of the grid were positioned over the same
place for each print.

Statistical Methods

In facial recognition, & two-dimensional image is numerically
represented as a vector (a one-dimensional list) of pixels that make
it up. For example, a 256 x 256 pixel image is rearanged into a

65,536 unit long vector. Each pixel is a box of varying color and
intensity. An accidental pattern on the outsole of a shoe may also
be *“pixilated” or rather divided up into boxes and rearranged into
a vector. Bach box that makes up the accidental pattern contains a
varying number of accidental marks. The accidental patterns are
compared by first decomposing them into their PCs and then using
a metric function to measure their distance apart in PC-space. We
will use the method of maximum likelihood Gaussian linear classi-
fication analysis (sometimes also called linear discriminant analysis,
LDA) to numerically gauge the similarity between patlerns based
on their proximity in PC-space (10,11,28).

The grid for recording the positions of accidental marks was
18 ¥ 18 boxes as shown in Fig. 1. The boxes, with the number of
accidentals they contained, were translated into feature vectors X;
(9,19). In this study, the components of the feature vector are the
number of accidental marks appearing in a particular grid box of a
given shoe on a given day. Data were stored in Excel and algo-
rithms for the accidental pattern comparisons were written using the
Mathematica computer algebra system (29). Initially, a total of fif-
teen accidental patterns were to be recorded for each of ten shoes
(five pairs) for a total of 150 accidental patterns, but because acci-
denial marks for the left shoe of the fifth pair came out unreadable,
only 135 accidental patterns were recorded. Furthermore, only those
accidental pattems with at least one accidental mark were included
in the PCA and maximum likelthood Gaussian—linear classification
analysis {(MLG-L.CA), leaving a total of 116 accidental patterns.

The transtation of the accidental patterns into feature vectors was
performed by stacking each 18-unil-long column of the grid
teneath the one after it starting from the leftmost column. This pro-
cedure yielded feature vectors 324 units long (18 x 18 boxes = 324
boxes} which was then assembled info an n X P data matrix X,
where # is the number of accidental patterns (feature vectors, here
116) to be used in a given analysis, and P = 324.

X oo Xy X304
X=| X1 - Xy Koz
X116t K164 X34

Every box in the feature vector represents a random variable and
every row in the data matrix is a vector of number of accidental
marks observed. The symbol X;, designates a (row) vector of data
representing accidental pattern 7. A data matrix with 7 rows con-
tains n accidental patterns. The average of all row vectors in X is
the average vector Z;. The multivariate analyses of data set (X)
undertaken in this study were PCA and MLG-LCA. For details on
these methods see reference (30) and references therein. ‘The Math-
ematica notebooks developed for this study are available upon
request from the authors,

Since the feature vector of an accidental pattern is simply a point
{in a high dimensional space) the similarity between patterns can
be gauged by an appropriate distance metric and decision algo-
rithm. The degree of “sameness” belween two arbitrary accidental
patterns was determined numerically by using MLG-LCA (28).
The PC-derived data matrix Z was used in place of the original
data matrix of accidental patterns X, due to its significantly smaller
size (116 x 32 at most for Z vs.116 x 324 for X in one case) and
duc to the fact that direct application of MLG-LCA to X was
impossible due to problems encountered with singular pooled
covariance matrices required by the algorithm.
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The MLG-LCA decision model uses a distance function {o find
the mean feature vector Z; that is closest to the “test” feature vec-
tor Z,.

The actual discriminant function constructed for the patterns
from shee 1 is given as

1
2

where S“,1 is the inverse of the pooled covariance matrix. See
reference (30) for a detailed description, A total of k = 9 discri-
minant functions were constructed, one for each shoe. The algo-
rithm decides that the accidental pattern j is most similar to the
predefined set of accidental patterns from shoe i according to
the decision rule

=T e =T 155
LF{ZJ) =7, Splle 54 Spllzf

arg max Li(Z;).
!

The predefined sets of accidental patterns were chosen to be all
those pattems recorded for a particular shoe over the course of the
30 days. Thus, there are nine sets of accidental pattemns, one set for
each shoe. Each set consists of 15 patterns, one for cach day that
data was recorded. In words, the decision rule above means: “the
(PCA reduced) accidental pattern Z; is most similar to the set of
(PCA reduced) accidental patterns from shoe / whose discriminant
function yields the largest value™ (28).

The ability of discriminant functions to accurately predict the
sample identity of a pattern which they have not been trained with,
is called classification error analysis {31). This is a very important
topic whenever statistical pattern recognition fechniques are applied
to forensic evidence. This is because discriminant functions, while
trained on a finite (probably small} set of data, will be expected to
classify or identify new pieces of evidence which they have not
been frained with. Thus, rigorously derived accurate estimates for
error rates of computed sets of discriminant functions are critical in
forensic science applications. For this study, we estimate the error
rates of the k discriminant functions in three different ways. We
actually compute estimates of the “comect classification rate”
which is one minus the error rate and is reported as a percentage.

The first estimate used is the “apparent” comect classification
rate computed by determining the number of accidental patterns
assigned lo their correct sample (by the discriminant functions)
divided by the total number of accidental patterns. This perfor-
mance estimate is known to be biased and tends to yield an overly
optimistic correct classification rate (28).

The second estimate is the overall “hold-one-out™ correct classi-
fication rate (10,32). This is computed by first recalculating the lin-
ear discriminant functions omitting a single accidental pattern from
the data set. Thus, the recalculated discriminant functions are not
frained (o identify the held out accidental pattern. This omitted
accidental pattern is then classified with the recalculated linear dis-
criminant functions and the process is repeated sequentially for
each accidental pattern in the data set. The number of correctly
classified “held-out” accidental patterns is divided by the total
number of accidental patterns in the entire data set (116 in this
study) to yield the overall hold-one-oul correct classification rate.

Finally, the “average hold-one-out™ correct classification rate is
computed, This process involves replicating a data set composed of
n observation vectors, n-times. Each replcate data set, however,
contains all but one of the original data vectors (33). The n data
sets are then used to recalculate a statistic on that data set in the
absence of the deleted data vector, producing a set of estimates of
the statistic. The set can then be used to produce an average and
standard deviation for the statistic {33). The average hold-one-out

correct classification rate is mathematically the least biased estima-
tion of the discrimination functions’ classification performance (13).

Here, we compute the average hold-one-out correct classification
rate by first computing all the samples’ hold-one-out correct classi-
fication rates and recording them in a “cross-validation table.”
Next, the average and standard deviation of the samples’ hold-one-
out correct classification rates is found yielding the average hold-
one-out correct classification rate (10,32,33).

Results and Discussion

PCA of All Accidental Patterns with At Least One Accidental
Mark

Out of 135 accidental patterns recorded for nine shoes (cf. Meth-
odology section, paragraph two), 116 contained at least one acci-
dental mark, These 116 accidental patterns were processed with
PCA. It was found that for the shoes in this study (all worn by the
same person and all the same make and model), 32 PCs described
99.5% of the total variance in the data set. One can think of vari-
ance as the overall structure of the data. Thus, the 202 dimensions
excluded collectively only accounted for 0.5% of the data’s struc-
ture. This 32D data set was then subject to MLG-LCA, also called
lincar discriminant analysis (LDA, cf. [9]), in order to quantitatively
probe the differences between the accidental patterns generated by
each shoe. Table | shows the hold-one-out cross validation results
for the correct classification of each accidental pattern using MLG-
LCA. The overall hold-one-out correct classification rate was 92%
(97% apparent correct classification rate). The average hold-one-out
correct classification rate was 92 + 9%. We were surprised at these
high correct classification rates, especially considering the fact that
evaluation of the data did not include details of the accidentals
(such as size and shape) or something like the outsole topography.

The 32D structure of this data is obviously too high in dimen-
sionality to plot. It is none-the-less very instructive to have a physi-
cal picture of the data. For this reason projection of the 116
accidental patterns into three-dimensional (3D) PC-space is plotted
in Fig. 2 which accounts for 59.7% of the data’s variance. While
these first three PCs only account for a small portion of the overall

TABLE 1—~Hold-one-out cross-validation table for maxinmum likelihood
Gaussian linear classification of the accidental patterns examined in this

study.
Individnal Shoe
No, “Hold-One-Out™
Accidental  No. Misidentified Incorrectly Correct

Shoe Patterns Patterns Predicted Identification
m Recorded® for Shoe Shoe Rates (%)
PIL 12 0 100
PIR 11 0 100
P2L 12 1 PIR 92
P2R 12 0 100
B3L 11 2 P1L, PZL 82
P3R 15 2 P4R, P5R 87
P4L 15 0 100
P4R 13 3 PHL, PSR x 2 77
P5L 0 Omit Omit Omit
P3R 15 i PIR 93

The 324-dimensional accidental patterns were reduced to 32 dimensions
(99.5% of total variance) using PCA. This table shows thal the average
correct identification rate for accidental patterns found on these shoes is
estimated (o be 92%.

*The accidental patterns used in the classification analysis were those
that had at least one accidental mark.
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FIG, 2—All accidental patterns with at least one accidental mark, pro-
Jected info the space of the first three PCs (59.7% of total variance). The
numbers adjacent to each data point label the shoe.

variance in the data, some clustering of the accidental patterns for
particular shoes is evident. This is consistent with the findings in
32D PC-space, ie., most of the patterns generated by the same
shoe are in close proximity. Within the classification theory we
employ in this study, MLG-LCA, the more proximate data poinls
are in space, the more likely their identity is the same, i.e., the
more likely they are drawn from the same distribution (28,32).

In general, the accidental paiterns appear to evolve by starting as
a clump of points (ie., pattems with only one or two accidental
marks) and then spreading out linearly in the PCI-PC2 plane (cf.
Fig. 2). Interestingly, the accidental patterns of shoes 2 (PIR), 4
(P2R), 5 (P3L), 6 (P3R), 8 (P4R), and 9 (P5R) trace out fairly lin-
ear paths in 3D PC-space (Alternative viewpoints of Fig. 2 are
available from the authors upon request) Patterns from shoe
4 (P2R), while somewhat spread out are nonctheless sirikingly
distinet from the other accidental patterns, These patterns seem to
follow a very linear path through 3D PC-space as they change over
time. Shoe 9 (PSR} shows accidental patterns that are much closer
to each other than those for shoe 4 (P2R) and are also distinct from
most of the other patterns. Unfortunately, we cannot infer much
about the linear paths traced out by some of the paiterns as they
evolve over time since these 3D plots account for a relatively Iow
amount of the data’s overall varance. The intention of these
figures is only o examine if the accidental patterns for the same
shoe are relatively close together in 3D PC-space and form distinct
clusters.

PCA of Accidental Patterns from Days 14 1o 30

The accidental patterns from the first 7 days contained few or no
accidental marks. Thus, these patierns are necessarily similar and
alt tightly clusiered (cf. lower left of Fig. 2). When these patterns
are removed and the remaining 63 accidental patierns from days 14
to 30 are dimensionafly reduced with PCA, the first 28 PCs
account for 99.5% of the data’s variance. Table 2 shows the hold-
one-out cross validation results for correct classification of these
accidental patterns using MLG-LCA. The overall hold-one-out

TABLE 2—Hold-one-out cross-validation table for maximum fikelihood
Gaussian linear classification of the accidental patterns for days 14-30.

Individual Shoe

No. No. “Hold-One-Out”

Accidental Misidentified Incorrectly Correct
Shoe Patterns Patterns Predicted Identification
iD Recorded for Shoe Shoe Rates (%)
PIL 7 0 100
PIR 7 2 P2Rx2 i
P2y 7 0 100
P2R T 0 100
P3L 7 2 PIL x 2 71
P3R 7 1 PAR 86
P4L 7 0 100
P4R 7 0 100
P5L G Omit Omit Omit
P3R 7 0 100

The 324-dimensional accidental patierns were reduced to 28 dimensions
(99.5% of total variance) using PCA. This table shows that the average cor-
rect identification rate for accidental patterns in this time period, is esti-
maled 10 be 92%. This is consistent with the correct identification rate
derived from Table 1.

correct classification rate was 92% (100% apparent correct classifi-
cation rate). The average hold-one-oul comect classification rate
was 92 = 13%. These rates are in general quite good although the
individual correct classification rates for shoes 2 (P2R} and 5 (P3L)
are at 71%. Considering that there are only seven paiterns for each
shoe, just one misidentification will strengly impact the shoe's
average correct classification rate. Given the good overall correct
classification rates oblained for this data we would expect the rates
for shoes 2 (P2R) and 5 (P3L) would increase if more accidental
patterns had been recorded between days 14 and 30.

The first three PCs accounted for 63.6% of the variance for the
accidental patterns from days 14 to 30 and their projection into 3D
PC-space is shown in Fig. 3. Even at this relatively low variance,
accidental patterns for shoes 2 (P1R), 3 (P2L), 5 (P3L), and 9

FIG. 3—Accidental patterns for days 14-30, projected into the space of
the first three PCs {63.6% of rotal variance). The numbers adjacent to each
data point label the shoe.
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TABLE 3—Hold-one-ouf cross-validation fable for maximum likeliiood
Gaussian linear classification of the accidental patterns for days 20-30.

Individual Shoe

No. No. “Hold-One-Out”

Accidental Misidentified Incorrectly Correct
Shoe Patterns Patterns Predicted Identification
iD Recorded for Shoe Shoe Rates (%)
PIL 4 0 100
PIR 4 2 P2R x 2 50
P2L 4 0 100
P2R 4 0 100
P3L 4 2 PIL x 2 50
P3R 4 2 PIL, PAR 50
P4L 4 1 P2L 75
P4R 4 0 100
P5L 0 Omit Omit Omit
PSR 4 0 [{84]

The 324-dimensional accidental patterns were reduced to 28 dimensions
(99.6% of total variance} using PCA. This tablc shows that the average cor-
rect identification rate for accidental patterns in this time period is estimated
to be 81%. See text for discussion of this much lower average correct
identification rate.

(P5R) are clearly distinct from each other and easy to pick out by
eye. Also, when viewing Fig. 3 straight up the PCl axis (not
shown) shoes 6 (P3R) and 8 (P4R) clearly form distinct clusters.
The accidental patterns for shoe 7 (P4L) are intermingled, however,
with those for shoe 1 (P1L) from any point of view.

PCA of Accidental Patierns from Days 14 to 20

Next, we examine the 36 accidental patterns from days 14 to 20.
The first 21 PCs account for 99.6% of the variance in this data set.
Table 3 shows the hold-one-out cross validation results for classifi-
cation of these accidental pattems using MLG-LCA. The overall
hold-one-out correct classification rate was 81% (100% apparent
comect classification rate). The average hold-one-out correct classi-
fication rate was 81 + 24%. Note that while the overall and aver-
age correct classification rates for this data set are low there are
only four patterns for each shoe, Bach misidentification by MLG-
LCA would thus be expected to impact these correct classification
rates by a wide margin.

Figure 4 shows a plot of the first three PCs for accidental pat-
temns from days 14 to 20. The plot accounts for 65.7% of this data
set’s variance. Good clustering of patterns (points) stemming from
the same shoe can be seen during this third week of wear. The pat-
terns of shoe 3 (P2ZL) appear intermingled with those for shoe 1
(P1L.). However, if Fig. 3 is viewed straight down the PCl-axis
one would see that this is not the case. Similarly, viewing the data
straight down the PC3-axis reveals that the patterns for shoes 5
(P3L), 6 (P3R) and 8 (P4R) are all distinct and well separated in
space (alternative views of Fig. 3 are available from the authors
upon request). Only shoes I (PIL) and 7 (P4L) are too close to
visually differentiate in 3D PC-space.

PCA of Accidental Patterns from Days 20 to 30

The best classification results of accidental patterns were
obtained for the last recorded week of wear, days 20-30 (36 pat-
terns). From a footwear examiners point of view, this is not unex-
pected as the shoes have accumulated the most wear and therefore
have developed the most elaborate patterns of random accidental
marks. The first 22 PCs accounted for 99.5% of the data’s variance.
All hold-one-out cross validation results for correct classification of

FIG. 4—Accidental patterns for days 14-20, projected inta the space of
the first three PCs (65.7%). The numbers adjacent to each data point label
the shoe.

these accidental patterns using MLG-LCA in 22D PC-space were
100%.

For an approximate, although visual representation of how differ-
ent the accidental patterns stemming from each shoe are at this
point, the data from days 20 to 30 projected into the space of the
first three PCs in Fig. 5 (accounts for 66.7% of the data’s variance),
Even at this relatively low variance value Fig. 5 conveys that the
patterns for each shoe form absolutely distinct and well-separated
clusters in 3D PC-space. Overall, as time passes it is exquisitely
clear that the accidental patterns developed on the outsoles of these

FIG. 5—Accidenial patterns for days 20-30, projected into the space of
the first three PCs (06.7% of the total variance). The numbers adjacent fo
each data peint label the shoe.
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shoes became more and more distingnishable, i.e., the inter-cluster
spread in data space increases over time.

Conclusion

The footwear accidental pattern comparison technique presented
in this study utilized enly a tiny amount of the information typi-
cally available to the foolwear examiner and vet it was usually
able to correctly identify which shoe generated a particular pat-
tem. The way the method works is to mathematically compare
the distribution of accidental marks (accidental patterns) on the
sole of an unknown shoe to multiple accidental patterns generated
by shoes of known identity. The statistical comparison method
used in this study was maximum likelihood Gaussian linear
classification. The identity of the unknown pattern is assigned to
the known shoe with statistically the most similar accidental
patterns.

The high correct classification rates from our minimally detailed
data lend a great deal of credence to the proposition postulated by
imprint examiners of the “uniquencss” of accidental patterns, If
data are also recorded for the physical characieristics of each acci-
dental, the above results indicate that this method would be even
more successful in identifying a shoe from one or more related
accidental patterns,

Patterns from the same shoe although at different points in time
tended to cluster closer to each other than patterns from different
shoes. This was demonstrated {numericaliy) in high dimensional
PC-space using MLG-LCA, and (graphically) in 3D PC-space. The
3D PC-space plots graphically show that generally there is no rela-
tionship between the patterns of the lefi and right shoes from the
same pair, as might be expected. If there were such a relationship
then one would expect to see tighter clustering between the patterns
(t.e., points in the 3D plots) from the same pair of shoes,

Comect classification rates using MLG-LCA and the hold-one-
out procedure ranged from 81% to 100% when 99.5% of (he
data’s variance was retained. Two factors affected the correct
classification rates, length of time the shoe was wom and the
number of accidental patterns included in the analysis. Most
notably, the longer the shoe was worn, the more different the
patterns  became, Although some of this information is well
known to the trained footwear examiner, in a coumt of law if
onc can use sophisticated yet understandable statistical methods
to draw conclusions about evidence and discuss statistical cer-
tainties, one can make a profound impression on the cowrts and
support expert footwear examiner testimony that has been amrived
at qualitatively.

By using the same manufacturer and model of shoe as well as
having the same person as the wearer, many variables that contrib-
ute to the “unique” characteristics formed on shoe soles were elim-
inated or muted. Hence, the ability to stll easily distinguish
between such shoes with minimally detailed data strongly supports
the claims of the great discrimination power of footwear impres-
sions. Logic then dictates that the inclusion of accidental mark
details, such as size and shape, will further add to this method’s
discriminating power.

We have already begun to expand upon this study by increasing
the number of participants, frequency of data collection, and length-
eting fhe total time over which accidental patterns are collected.
We believe this study will further strengthen and elaborate on our
findings here. In the future, we would like to implement automated
methods of data collection for the shoes, in particular using high
resolution laser scanning to map the surface topography of the out-
sole. Computer aided design software could then be used to make

unbiased measurements and projections of the data for comparison
to other shoe soles and shoe sole impressions.
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premise seems to have always held. Although the individual
characteristics that are present in a shoe print are not necessarily
of natural origin, the physical processes by which they are created
are certainly random. When these characteristics are considered
in combination with other defects or when the internal details or
conformation of a single defect is sufficiently complex, the print
is considered to be unique.

The defects on the sole of a shoe may be described generally
as nicks, scratches, cuts, punctures, tears, embedded air bubbles
caused by manufacturing imperfections, and ragged holes.
Additionally, there may be foreign materials or particies adhering
to the sole or wedged into gaps in the tread pattern elements. Such
materials may include pebbles, glass, small sections of twigs,
thumbtacks, nails, chewing gum, tar, and adhesive materials
(e.g., Shoe Goo, Bostik Shoe Repair Adhesive, McNett Freesole
Shoe Repair) designed to repair defects on shoe soles.

The value of a specific defect as an identifier is directly
correlated with its dimensional complexity. The more complex
the outline of an accidental defect, the less likely it could be
duplicated by random processes. The variables associated with
such defects may be summarized as follows.

Variables

» Position: A defect is characterized by its position on
the sole of the shoe. The determination of position
may be made relative to the perimeter of a shoe print,
relative to particular tread elements or portions of
patterns, or relative to other defects.

« Configuration: The simplest defect will be referred
to as a point. Similar to a point in geometry, a point
has no configuration — no discernible shape or elonga-
tion., However, if a defect is anything other than a
point, it will have some particular shape. It will have
a certain length (e.g., a straight-sliced cut in the sole).
It may have both length and width (e.g., a 15 mm-long,
curving cut in the sole may either form a very shallow
curve or a more arced curve), [t may have a distinctive,
two-dimensional outline (e.g., an irregularly-shaped
pebble lodged in a crevice of the tread pattern or a
ragged-edged hole worn through the outsole).
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* QOrientation: Excluding point characteristics, a defect
of any particular shape will have a specific rotational
orientation, differentiating it from another similarly
shaped defect that has some different angular orienta-
tion. For example, a 25 mm-long, straight-sliced cut in
a sole may be parallel with a line from toe to heel, or
perpendicular to that line, or rotated to any intermedi-
ate angle,

In the course of a shoe print examination, these variables are
considered independently for each defect and then in combination
with all the other defects. These individual characteristics, along
with the class characteristics, enable an examiner to determine
the identity or nonidentity of a shoe print when compared with
similar characteristics on a suspect shoe,

Hypothetical Shoe and Print

To begin a probabilistic analysis of these types of individual
characteristics, a hypothetical shoe and its related shoe print is
used with the following assumptions:

* The shoe is a flat-soled, athletic shoe, men’s size §
(US).

* The surface area of a print made by the shoe is 16,000
sq mm (Figure 1),

Bl

Figure !
Hypothetical shoe with 16,000 sq mm grid.
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» It is equally likely for a defect to appear at any particu-
lar position on the shoe as any other. (There may, in
actuality, be a greater likelihood for a defect to be
present at certain locations than others. For example,
defects may more often be found on the heel rather
than under the arch of the foot, but for the purposes of
this study, it is assumed that no position on the shoe
is either more or less likely than any other to have a
defect.)

» The position of a defect and the internal details of a
defect, if any, may be visualized and measured to a
resolution of 1 mm.

* All defects, their conformation, and their orientations
are accidental and random (no class characteristics are
considered).

+ It is acknowledged that all actual defects are, in fact,
three-dimensional. However, for the purposes of this
study, it is assumed that if a particular dimension does
not exceed the minimum resolution (I mm), it will be
treated as if it were two-dimensional. For example, a
straight-line cut on the sole of a shoe is 12 mm long
and at no point along its length does it exceed 1 mm
in width. The real depth and the real width of that cut
will both be excluded from consideration.

Standardized Individual Characteristics (Figure 2)

+ Point: The simplest defect is a point characteristic. It
might, for example, be the result of the penetration of
the sole by a thorn or a thumbtack that subsequently
pulled out and left a minute defect in the sole. A point
characteristic has no discernible length or width (or,
at least, none that exceed the specified resolution of |
mmn). It has a specific position only,

* Line: A line characteristic is straight and has a specific
position, a discernible length, and an observable orien-
tation.
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* Curve: A curve characteristic has a specific position,
a discernible length, an observable orientation, and
a particular degree of curvature with the apex of
the curve located at a specific position on the curve
(explanations of these details will follow),

+ Enclosure: An enclosure characteristic has a specific
position, discernible length and width, an observable
orientation, and some particular outline shape in two
dimensions. It forms an enclosed area around a blank
or relatively unmarked space.

* Three-dimensional:. A three~-dimensional character-
istic has a specific position, discernible length and
width, an observable orientation, some particular
outline shape, and what might be thought of as varia-
tions in elevation within the interior of the enclosed
area.

Point

Lines ™~ s -
Curves ¢/~ — ~_
Enclosures o2 o £~

Three-dimensional

Figure 2

Standardized individual characteristics.
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Probabilities of Point Characteristics

A single point characteristic may appear randomly at any one
of the 16,000 discrete locations of the shoe print. The formula
for simple probability can be used to describe it:

Where P, = the probability of an event occurring
n = the number of ways of success
n = the total number of possible outcomes

- m
B=a

For a single point characteristic ({ pe):

o1
fipc = 18000 - 000°%°
= 1 out of 16,000

When two {or more) point characteristics occur, there are a
finite number of distinct ways the defects could appear on any
of the 16,000 positions on the sole. The appropriate formula for
a simple combination is:

nl

nCr = (n-rj! rl

Where ,C,. = the combination of r items

taken » at a time [“n!” represents “n factorial” which is:
(n (D@2 --2-1

For example, 6! =6 -5-4-3-2-1=720]

For two point characteristics the number of distinct
combinations is;

C = 16,000! _ 16,000 x 15,999
16,000 (16,000-2)! 2

=127,892,000
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# of point Probabitity of random
characteristics duplication

1 1 out of 16,200

1 out of 127,992,000
1 out of 6.83E+11
1 out of 2.73E+15
1 out of 8.73E+18
1 out of 2.33E+22
1 out of 5.32E+25
1 out of L.OGE+2%
1 out of 1.89E+32
1 out of 3.02E+35

|| ]lw

e
=

Table I

Random duplication of "point” characteristics.

The odds, then, against looking at another similar theoretical
shoe — also with two random point defects — and finding them
in the same two positions is 1 out of 127,992,000. (Visualizing
numbers with large exponents can range from difficult to
impossible.*)

Probabilities of Line Characteristics

A line characteristic is defined as a straight line. Although a
line may conceivably start at any one of the 16,000 positions on
the shoe sole and may end at any one of the 15,999 remaining
positions, practical experience reveals that long lines that
continue across a significant portion of the shoe print are
encountered far less frequently than shorter lines, The length

¥ When flying in an aircraft above the surface of the Earth, the
immensity of the planet on which we live is well illustrated. One
can imagine that the entire sphere of the Earth consists entirely
of fine grains of white beach sand — the oceans, crust, mantle,
and all the way through the core — nothing but white sand. If a
cubic centimeter can contain 8,000 grains of sand, there would be
approximately 8,665,655,334,766,030,000,000,000,000,000 grains
inside a sphere the same size as the Earth. If a single grain of red
sand were randomly inserted within an Earth-sized pile of white
ones, the chance of blindly plucking that red grain out would be 1
out of that number of grains — that is, 1 out of 8.666E+30 (8,666
billion billion biilion).
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of a line, therefore, will be described as short, medium, or long,
relative either to other lines within the print or to lines found on
shoe prints in general. For example, a short line may be 6 mm
or less in length. A medium line may be from 7 mm to 15 mm
long, and a long line may be all lines 16 mm or longer in length.
These arbitrary divisions — short, medium, or long — are used
instead of actual lengths to preserve the conservatism of the
approach. Additionally, a line will be described by its rotational
orientation. Lines with any of eight orientations may be easily
differentiated (Figure 3).

X* 1/ A\

Qverlaid Separated

Figure 3
Eight possible orientations for “lines”.

These factors for lines, multiplied by the factor for position,
yield the following:

3 {length) x 8 {(orientation) x 16,000 (position) = 384,000

The probability of random duplication of a single line
characteristic is 1 out of 384,000,

# of line Probability of random
characteristics duplication

1 1 out of 384,000

1 out of 1.37TE+10
| out of 9.441i+15
i out of 9.06E+20
1 out of 6.96E+25
i out of 4.45E+30
1 gut of 2.44E+35
1 out of F.I7E+40
1 out of 5.00E+44
1 out of 1.92E+49

wl e jula]lw]en

—
<

Table 2
Random duplication of line characteristics.
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Probabilities of Curve Characteristics

A curve characteristic has the same attributes as a line with
the addition of an observable curvature. The analysis will be
limited to curves that are relatively shallow. This restriction
permits the consideration of curves that approach or equal arcs
of circles but excludes all curves that are more curved than
that — elongated parabolic curves, for example (Figure 4). Based
on experience in the examination of actual shoe prints, elongated
curves are encountered far less frequently than more shallow
ones.

Because curves share the fundamental factors of lines, the
determination of the total possible number of curves begins
there {384,000 possibilities). For each one of those curves,
the direction of curvature may be either arbitrarily positive
(upward or to the right) or arbitrarily negative (downward or
to the left),

Shallow »—  ~__
curves -
typical o -~
Elongated N

C

curves -
atypicat (not
considered)

Figure 4

Shallow vs elongated curves.
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Additional attributes that differentiate curves from one
another were assigned (Figure 5). A curve will exhibit a certain
degree of curvature (barely curved, very shaliow, shallow,
almost an arc, arced). When viewing curves from an arbitrary
but consistent viewpoint (for example, curving upward with the
end points below the peak), the location of the point of highest
curvature, the apex of the curve, may vary (far to the left, lefi
of center, centered, right of center, far to the right).

Degrees of curvature: Apex location:
Barely curved ¢~ T~ Farto the left
Very shallow ™~ | =~ Left of center

Shallow < N |~ contered
Almost an arc /_\ " "\ Right of center

Arced /_\ " \Far to the right

Figure 5

Degrees of curvarure and apex location.

The rationale behind these attributes is that an examiner
could easily differentiate two curves in which either the degree
of curvature was different with the apex location the same or in
which the apex location was different with the same degree of
curvature. They would be distinguishable in both cases as curves
with different shapes.

The combined factors for a curve characteristic are:

16,000 (position} x 3 (length) x 8 {orientation)
x 2 (direction of curvature) x 5 (degree of curvature)
x 5 {apex location) = 19,200,000

If the center point of a particular curve lies at the edge of the
theoretical shoe print, that curve can only curve in one direction
toward the center of the print, because curving away from the
center would place the points that constitute the curve outside
the perimeter of the print. This eliminates a number of possible
curves, Also, if a curve is very short, there may not be sufficient
length for the curve to exhibit a discernible apex location. These
limitations to the number of total possible curves have been offset
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by limiting the attribufes to only eight possible orientations, to
only five degrees of curvature, and to only five apex location
classes, Certainly each of these distinguishing features could be
differentiated to greater degrees than the specified number of
varieties, more than compensating for the reduction in number
due to the exclusion of curves that would be out of bounds or
too short. Additionally, different geometric types of curves
that could be distingnished and classified {circular, parabolic,
hyperbolic, elliptical, spiral) have, likewise, not been considered.
Excluding these subclasses of curves as factors further increases
the conservatism,

Finally then, if a single curve characteristic appears on a
shoe print, the probability of another print bearing a random,
accidental, curve characteristic of the same length and
orientation, with the same degree and direction of curvature,
with the same apex location, and in the same position on the
print is 1 out of 19,200,000,

# of curve Probability of random
characteristics duplication

1 1 out of 19,200,000
1 out of 1.84E+14
1 out of 1.18E+21
1 out of 5.66E+27
1 owt of 2.17E+34
t out of 6.96E+40
1 out of 1.9FE+47
1 out of 4 58E+53
1 out of 9.77E+59
1 out of 1.88E+66

wloelwlonfur B Fw |

e
<

Table 3

Random duplication of curve characteristics.
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Probabilities of Enclosure Characteristics

Two-dimensional enclosure characteristics {referred to in
geometry as curvilinear shapes) range from relatively simple to
very complex in outline. Figure 6 shows some examples.

& -
Figure 6

Enclaosure characreristics.

Initial thoughts about characterizing enclosures were that
they consisted of a specific composite of single points along
the perimeter of the enclosure, and that the probability of
those specific points, taken in combination, would define
the enclosure. This would have made duplication by random
processes of even relatively simple enclosures highly unlikely.
But assumptions about how enclosures are presumably created
led to what is believed to be a more realistic (and mathematically
conservative) conclusion as to how they should be modeled,

Three primary possibilities exist for creating an enclosure-
type defect on a shoe sole. First, a sole may be defaced by some
small object that is the same general shape as the resultant defect
(though reversed or negative). Second, a section of the sole may
be physically torn away from the rest of the sole. And third,
severe wear of the sole may penetrate the exterior outsole layer,
leaving an enclosure-type window through that exterior layer
to the midsole or underlayment. It seems an approach that takes
these mechanisms of origin into account is in order. Therefore,
each enclosure will be treated as an entity, rather than as an
agglomerate of individual, random points.

An enclosure may be one of two types. A geometric enclosure
would be the outline of some simple geometric shape — a circle, an
oval, a triangle, a square, a rectangle, and so forth. An irregular
enclosure would bear an outline that would be described as
jagged, asymmetric, or random. The four enclosures portrayed
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in Figure 6 would be of this type. Although geometric enclosures
could certainly originate from random, accidental damage to a
shoe, the likelihood that they were created by damage resulting
from contact with some geometric-shaped object is greater. This
reduces their value as identifiers when compared with irregular
enclosures. For example, the shoes of construction workers might
be marked by similarly shaped, two-dimensional rectangles as a
result of the workers having stepped on the edges of the heads
of nails scattered around the job site. Or, the shoes of workers in
a machine shop might be marked by similarly shaped crescents
from walking on metal shavings from lathes. In either case,
the locations and the orientations of the defects on the shoes
would be random, but the replication of the geometric shapes
themselves would not be.

A geometric enclosure in the shape of a circle would exhibit
no distinguishable orientation. Circular enclosures will be
characterized by their size and location only:

3 (size) x 16,000 (position) = 48,000

# of civcular
enclosure
characteristics

1 1 cut of 48,000

1 out of 1.15E+09
i out of 1.84E+13
1 out of 2.21E+17
1 out of 2.12E+21
I out of 1,70E+25
I out of 1.16E+29
I out of 6.98E+32
1 aut of 3.72E+36
! out of 1.79E+40

Probabitity of randem
duplication

Wit ] ] e

s
=

Table 4

Random duplication of circular enclosure characteristics.

Noncircular geometric enclosures will be characterized
by their relative size, their orientation, and their location.
The combined factors for a noncircular geometric enclosure
characteristic are:

3 (size) x 8 (orientation) x 16,000 (position) = 384,000
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# of non-circular
geometric
enciosure

Probability of random
duplication

1 1 out of 384,000
1 out of 7.37E+10
| out of 9.44E+i5
1 out of 9.066E+20
1 put of 6.96E+25
1 out of 4 45E+30
1 out of 2 44E+35
1 out of 1I7E+40
| out of 5.00E+44
1 out of L.92E+49

Sl fwn]|~|lw]n

—
=

Table 5

Random duplication of geometric enclosure characteristics.

Reasonably, an irregular enclosure with a more complex
outline will have greater value as an identifier than one with
a simple outline. They may be characterized by the number of
directional deviations along their perimeter. For example, the
irregular enclosure in Figure 7 exhibits ten such changes of
direction. As one traces the perimeter of the enclosure, beginning
between [0 and 1, there is a very sharp deviation to the right at I,
there is a sharp deviation to the left at 2, a short and somewhat
rounded deviation to the right at 3, a fairly sharp deviation to
the right at 4, a very gradual deviation to the left at 5, and so
on. To assign a value to the complexity of such enclosures, the
number of possible direction changes (2, either right or left) will
be raised to the power of the number of directional deviations
(10 for the enclosure in Figure 7). A similar methodology has
been employed to characterize two-dimensional fractures [1].
Application of this mathematical model to irregular enclosures
disregards the additional variables of the angularity of each
deviation (e.g., sharp or gentle) and the dissimilar distances
along the contour between adjacent deviations. Two irregular
enclosures having the same number of directional deviations
but with differing angularities and distances would certainly
appear different when compared. Figure 8 exhibits directional
deviations that correspond with those in Figure 7 with regard to
total number and direction but not in angularity or the distances
along the contour between adjacent deviations. Their treatment.
as equivalent by the quantifying methodology adds significantly
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to the conservatism of the approach. This treatment, 2 raised
to the power of the number of directional deviations, will be
referred to as the complexity factor.

4
Figure 7

Ten directional deviations of an irregular enclosure.

10

4
Figure 8

An irregular enclosure with ten similar directional deviations
but different angularities and lengths.

Irregular enclosures, then, will be characterized by their
relative size, their orientation, their location, and their
complexity. The combined factors for an irregular enclosure
characteristic are:

3 (size) x B (orientation) x 16,000 (position) x {complexity factor)

Because irregular enclosures are less common than the
previously discussed types of characteristics, Table 6 lists the
probability of random duplication of single irregular enclosure
characteristics by complexity factor.
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je‘:,‘;::;e::iiin::‘ ?ro‘bab.ilily of rand.om
irregular enclosare duri’:_:_tel'li?:ro:“tzz;::;gle
{complexity factor)
3 1 out of 3.07E+06
4 1 out of 6.14E+06
3 | out of 1.23E+07
6 i out of 2.46E+07
7 1 out of 4.92E+47
8 1 out of 9.83E+07
9 1 out of 1.97E+08
10 1 out of 3.93E+08
11 1 put of 7.86E+08
12 Eout of 1 57E+4%
13 1 out of 3.15E+09
14 1 out of €.29E+09
15 1out of 1.26E+10
16 1 out of 2.52E+10
&7 1 out of 5.03E+1¢
[£:] 1 out of 1.01E+11
19 1 out of 2.01B+11
20 1 ocut of 4.03E+11
Table 6
Random duplication of single irregular enclosure
characteristics.

Probahilities of Three-dimensional Characteristics

When a portion of a shoe sole, such as the lug of a work
boot, is physically broken off, the exposed surface may exhibit
random variations in height. Naturally, such a surface requires
an impressionable medium — a two-dimensional shoe print will
not record these variations. The nature and appearance of the
fractured surface is dependent upon the material of which the
sole is made, and random, irregularly fractured surfaces may
not occur with some shoes. In ideal cases, the exposed surface
will resemble the interior surfaces of brittie metals that have
been fractured. Fractals have been proposed by Thornton [2] to
model these surfaces. His attempts to determine their complexity
and “degree of uniqueness” were based on the processing time
required by a computer to calculate the fractals.
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All of the comments and calculations that follow are based
on the assumption that the surfaces are random in nature both
in the method of generation and in their appearance.

The more complex the fractured surface, the less likely
it is to be duplicated by random production. The modeled
surface in Figure 9 depicts a 50 x 50 grid with random surface
clevations,

Figure 9

50 x 50 grid with random surface elevations,

An understanding of the method used to determine the
probability of occurrence of such a surface is alded by significant
simplification. Therefore, the first surface to be examined will
be a3 x 3 grid with elevation variations of either 0 or +1 unit only
(Figure 10). Each of the labeled intersections represents a point
where the elevation could be either 0 or +1. In the illustrated
case, the only +1 point is that labeled 9. The other eight points
are at 0 elevation.

9

Figure 10
3x 3 grid.

The formula for complete variations is used to determine
the number of possibilities in such a case. The number of
possible height variations is raised to the power of the number
-of positions on the grid. In the simple case above, there are 27,
or 512, different variations of a model fracture that size that has
only two possible variations in height.

Journal of Forensic identification
56 (4}, 2006 \ 583



Grid size is equivalent to a measurement of the area of
the defect. If details within the fracture on the shoe print
are resolvable to 1 mm, then the area of the defect would be
measured or estimated in square millimeters. That measurement
of area becomes the exponent of the number of variations, and
the depth, measured using the same resolution, becomes the

base number.

Again, to maintain conservatism, the height variation will be
limited to only two possibilities.

Grid size # of variations P"“"‘:}’jg‘; of random
2x2 bl 1outef 16
3x3 Al i out of 312
4x4 o 1 out of 65,536
5x5 2% I out of 33,554,432
10x 10 2100 | out of 1.27E+30
15x15 pai 1 out of 5.39E+67
2Wx 20 bl i out of 2.58E+120
Table 7

Random duplication of three-dimensional characteristics.

Figure 11 is an example of such a 10 x 10 grid listed in Table
7 with randomly generated heights of +1 or 0 for each of the

100 points.

Figure 11

10 x 10 grid with random heights of +1 or 0.

Additional possible height variations, such as those previously
depicted in Figure 9, increase the magnitudes of the probabilities

tremendously.
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Compound Characteristics

It is not uncommeon to find what will be termed compound
characteristics in a shoe print. These consist of two or more joined
(or apparently joined) defects. Probably the most common would
be a curving line that consists of multiple curve characteristics.
These might be referred to as meandering curves (Figure 12).

s

~r” j
Figure 12

Meandering curves.

Other compound characteristics might consist of an enclosure
with an attached line or a curve attached to a three-dimensional
characteristic. Though such defects are significantly more
distinctive than regular characteristics, any quantification of
compound characteristics should be applied to the separate,
distinct portions of the defects individually to maintain a
conservative methodology.

Combinations of Characteristics

Most shoes will exhibit more than one individual
characteristic, and commonly some combination of the above
types of characteristics will be present. For example, a shoe sole
may have two point characteristics, one line characteristic, two
curve characteristics, and one irregular enclosure characteristic
(with, say, a complexity factor of 6} all distributed randomly on
its surface.

A determination of the combined probability of these
separate characteristics on the hypothetical shoe requires
that the individual probabilities of each of the characteristics
be multiplied together. For the example mentioned above, the
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probability of random duplication of a single point characteristic
is 1 out of 16,000. The second point characteristic could be
anywhere on the shoe surface except at the same position as the
first point. Therefore, the probability of random duplication of
that second point characteristic is 1 out of 15,999. Similarly,
neither the line characteristic nor the curve characteristics could
include either of the two point characteristic locations (or they
would obscure that point completely). A slight modification of
the line and curve probabilities must be made to reflect this
restriction; they are recalculated as if the surface area were
reduced by | sq mm for each preceding characteristic. For the
hypothetical print that displays two points, one line, two curves,
and irregular enclosure of complexity 6, then, the formula for
this particular combination of characteristics is:

1st point  2nd point fine 15t curve
1 1 1 1
FGomb. of Chars. = 76,000 * 15,696 © 383,508 © 19,199,997
2nd curve enclosure
R NP

1 x 1
19,198,826 = 25,576,000

=1,12E-36
=1 out of 8.91E+35

This method of multiplying the individual probabilities
together is appropriate for any particular combination of
characteristics,

Conclusions

This study is not necessarily meant to reflect the probabilities
of finding these types of characteristics in actual shoe prints. By
establishing the criteria in what is felt to be a conservative and
quasi-realistic manner, this analysis does yield information about
the sometimes-incomprehensible magnitude of the “uniqueness”
of these types of characteristics when they occur in multiples
or combinations.
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Any decrease in the effective resolution of the details of
a shoe print (e.g., if the print was made in coarse soil) will
significantly affect any estimated or theoretical probabilities. A
simple example will demonstrate. If the resolution is decreased
such that features smaller than 2 mm are blurred or undetectable,
the original 16,000 sq mm area is reduced to 4,000 resolvable
positions. The number of possible resolvable lines, then, is
reduced from 384,000 to 96,000, which is a reduction factor
of 4,

If the area of a print is less than 16,000 sq mm (for example,
when the shoe is a smaller size), the estimated or theoretical
probabilities will also be decreased. However, if only a partial
shoe print (of the hypothetical average-sized shoe used herein)
is considered, the estimated or theoretical probabilities would
not be affected.

Vehicle tire prints were not directly addressed by this study,
but the same methodology could be applied. The surface area of
an average-sized tire on a compact car is about 280,000 sq mm.
Assuming the same I-mm resolution, the theoretical probability
of random duplication of two point characteristics would be |
out of 39,199,860,000.

The numerical variables associated with the class
characteristics of shoes were not included in probability
calcuiations. Consideration of these factors would certainly
further individualize a particular shoe or print, in some cases,
drastically. There are tens of thousands of different shoe sole
patterns. Not only is each pattern available in many different
sizes, but also soles may exhibit varying areas and degrees of
wear, mold defects, injection-related voids, foxing strips, and
heel labels.

Before an examiner could even consider applying probability
estimates to actual casework, validation studies would have to
be performed to verify that true-life occurrences are accurately
modeled. Two scenarios come to mind, A number of new,
unmarked, identical pairs of shoes could be obtained. Shoes with
flat and relatively unmarked outsoles would be preferred. They
could either all be worn by the same individual or by several
different individuals to walk across miscellaneous materials
that would create marks on them. The resultant marks could
then be examined and quantified. A second study could be
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siructured as an examination of existing defects on old shoes
that are acquired from different sources and that had been worn
by different people. Any validation study should at least address
these questions:

1. Is the position of a characteristic on a shoe (and shoe
print} resolvable to I mm?

2. Are points and other described characteristics actually
found on shoes (and shoe prints)?

3. s it possible to differentiate the rotational orientation
of characteristics to at least eight different angles?

4. Is there greater likelihood of finding characteristics
at some locations on shoes as opposed to others (for
example, are characteristics more commonly found on
heels rather than on instep portions)?

5. Are long line characteristics (those that traverse a sig-
nificant portion of the length or width of the shoe) less
often encountered than shorter line characteristics?

6. Are relatively shallow curves (arcs of circles or less)
more or less common than elongated curves?

7. Can the attributes of curves be differentiated by at least
five degrees of curvature and at least five apex loca-
tions?

8. Are the five listed degrees of curvature and the five
apex locations equally likely to occur?

Bven infinitesimally small probabilities, in and of themselves,
would never directly allow examiners to “positively identify” a
print as having been created by a particular shoe, However, such
statistics as these provide the examiner (and possibly a judge
or the members of a jury) with some perspective regarding the
incredible uniqueness of a shoe with even a small number of
individual characteristics,

For further information, please contact:

Rocky S. Stone

741 South Highway 217
Tijeras, NM 87059
rockyabgq{@aol.com
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Technicai Note

The Mount Bierstadt Study: An
Experiment in Unique Damage Formation
in Footwear

T. W. Adair!
J. Lemay’

A. McDonald?
R. Shaw?

R. Tewes*

Abstract: Randomly formed damage on footwear outsoles has
appropriately been used to compare crime scene impressions to the
known shoes of suspects, witnesses, and victims, In this study, the
authors wore new, identical boots (two pairs) during a seven-mile hike,
The authors attempted to control the major variables except the manner
in which the outsole of the boot made contact with the ground. The
results of this experiment support the use of these marks for the indi-
vidualization of footwear and confirm their random formation through
the use of the shoe by the wearer.

Introduction

The use of random damage characteristics has been reliably
used in the comparison of known outsoles to questioned impres-
sions found at crime scenes {1, 2]. These damage characteristics
are formed through the use of the shoes while they are worn.
The presence of these characteristics in both the known shoe
and crime scene impression may allow the footwear examiner to
individualize one shoe as having made an impression.
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The authors hypothesized that these characteristics could be
created during a single common activity, such as a hiking trip.
it was further hypothesized that the characteristics would exist
in sufficient numbers to individualize the shoes, even among
participants wearing the same shoes and following the same
general walking path under the same environmental condi-
tions. By exposing the same manufactured shoes to the same
environmental, topographical, and duration of use conditions,
the authors hoped to test the premise that accidental character-
istics would be created, allowing for the individualization of
the shoes. To that end, this study was developed to answer the
following questions:

1. Will random characieristics be created in suffi-
cient numbers to allow for individualization by
low- to medium-impact walking over relatively short
distances?

2. Will these random characteristics share any common
location or orientation with other characteristics found
on outsoles exposed to the same testing conditions but
worn by different persons?

3. Would two pairs of shoes worn by the same individual
under the same physical conditions exhibit accidental
characteristics allowing for individualization?

Materials and Methods

The Altitude IT hiking boot from the Hi Tec Corporation was
selected as the test shoe in this study (Figure 1). The Altitude 11
has a seam-sealed waterproof nubuc leather upper with a carbon
rubber outsole. It also features a lightweight compression-molded
midsole and steel shank. The finished weight of the shoe is about -
2loz. Twelve pairs of boots were acquired from the company.
The men’s sizes were all 10.5 (US), and the women’s sizes were
8, 9, and 10 (US). Each of the six participants (three men and
three women) had two pairs of boots for the study. One pair was
designated to be worn during the ascent and the other during the
descent. The boots were not damaged prior to the study. Some
boots were briefly worn on carpeting (indoors) prior to the study
to break them in but were inspected prior to the hike to ensure
that no damage had occurred. Photographs and black fingerprint
powder transparency lifts were made of each shoe prior to and
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Figure 1

Outsole of the Altitude IT hiking boot from the Hi Tec
Corporation.
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immediately after the hike., One female participant was unable
to make the initial hike and completed the hike with one of the
authors a few weeks later. The environmental conditions were
similar to those experienced by the previous group.

Mount Bierstadt in Colorado has an elevation of 14,065 feet
and a trailhead beginning at 11,691 feet. The total hiking time
was approximately 3.5 hours and the total distance traveled
(round trip) was approximately 7 miles with a 2400-foot gain in
elevation from traithead to summit. Mount Bierstadt is ranked as
an “easy” hike and was selected by the authors because it repre-
sented a popular destination and relatively low-impact hiking
conditions. On July 31, 2005, the authors began their climb of
Mount Bierstadt on Guanella Pass near Georgetown, Colorado.
The trail is composed primarily of compacted groomed soil
with randomly occurring larger rocks embedded in the surface
mix. The last part (approximately 200-250 yards} of the trail is
comprised of a large boulder ficld that requires slow and deliber-
ate foot placement. Although the hike was expected to be fairly
easy and completed in one day, unpredictable and rapidly chang-
ing weather conditions, commonly found at these high elevations,
were encountered. The authors experienced a hailstorm lasting
nearly the entire descent. Although the trail conditions became
wetter during the descent, the compactness of the trail did not
seem to differ significantly from the ascent.

Discussion

Shortly after completing the hike, the authors rephotographed
all the boots and made transparent black powdered lifts. The
boois were not worn beiween the completion of the hike and
the documentation of the outsole conditions. The authors
then examined the outsoles for the presence of the accidental
characteristics, To assist in the examination of these boots, the
individual outsole elements were given a numerical “address”
from one to thirty-eight (Figure 2}. Examiners noted the presence
of each accidental mark and its address (location) on the outsole.
The authors counted only the accidental marks that comprised
sufficient size and shape to suggest that they would be repre-
sented in a crime scene impression under favorable conditions
and could be used to individualize the boot. (This study did not
seek to determine whether each and every accidental mark would
be reproduced in a latent or crime scene impression, because
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Figure 2

Outsole of the Altitude II hiking boot with “address” identifiers
I to 38.
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such findings would be predicated on a number of changing
factors such as the transfer medium and the surface receiving the
impression.) The men’s and women’s boots differed slightly in
the number of outsole elements containing at least one accidental
mark. On average, the men’s boots contained accidental marks
on 44% of the elements, whereas the women’s boots contained
marks on 33% of the outsole elements, Each male outweighed
each female by at least 50 pounds, which may contribute to
heavier footsteps, resulting in additional damage. Within the
gender groups there was variation as well, One male had as few
as 13% of the elements (representing five accidental marks on
one boot) with accidental marks, whereas another male had one
boot with 62% of the elements containing marks. (The first male
subject is a long-time hiker and stated that he subconsciously
avoids larger rocks and drop-offs on trails. This may help to
explain the fower number on average for this male subject when
compared to the other two.)

The outsoles were then compared to each other to determine
whether they contained enough detail to be individualized. Each
outsole did contain a sufficient number of accidental marks to
allow for individualization and each outsole could easily be
differentiated from the other outsoles in the study. Additionally,
the transparent lifts were reversed and compared as well with the
same results. This resulted in a comparison group of 24 outsoles
(12 normal, 12 reversed) totaling 576 comparisons. Although
significant differences in the physical size of outsoles would
normally be sufficient to eliminate a questioned impression,
the authors also verified the lack of corresponding damage in
the same “address locations” on the outsole, regardless of their
physical size differences. In other words, accidental marks
found on address location #32 on a women’s size 8 outsole were
compared to any accidental marks found at the same address
location on a men’s size 10.5 outsole. No corresponding marks
were found at any locations between the subject outsoles (normal
or reversed) in this study.

Conclusion

The results of this study demonstrate the widely accepted
proposition that the accidental damage found on footwear
outsoles is randomly produced. This study attempted to elimi-
nate as many variables contributing to the formation of these
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accidental marks as possible. By using the same style of boots
(in the same new condition), the same walking path, the same
environmental conditions, and the same duration of use, the
authors were able to eliminate all major contributing factors to
the formation of these marks, aside from the subject’s walking
style and the random manner in which the outsole made contact
with the micro-topography of the walking trail. In addition,
the results of this study indicate that these accidental marks
may be created by a single walking event, representing one of
many changes occurring in the evolution of the damage and wear
represented on the outsoie. Similar studies should be conducted
and reported to further test these findings under varied condi-
tions.
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- THE SCIENCE OF TIRE IMPRESSION IDENTIFICATION

by Cpl. L.A. Nause, Carlyle Identification Section,

INTRODUCTION
Today's modern pneumatic tire is the
result of almost 100 years of applied
science, engineering and research.
Thetireis composed of many different
components each meeting specific
requirements, yet all working together
to achieve the basic functions of a
pneumatic tire,
tire tread is one such component
it has been the object of much
-Tesearch and development since the
very early days of the pneumatic tire.

vyina RCMP Sub-Division, Carlyle, Saskatchewan

Tread — The tread is the abrasion
resistant component of the tire
and forms a protective covering
for the carcass. The tread has to
be designed for traction, silent
running and low heat buildup.
The tread is normally composed
of a blend of oil-extended SBR
and polybutadiene elastomers
which have been compounded
by adding carbon black, oils, cura-
tive ingredients and other chemi-
cals and fillers. A compounded
elastomeris popularly called "rub-

1. Tire Technology — F.J. Kovac, The Good-

ber'. The composition of the
rubber, the cross section shape of

year Tire & Aubber Co., page 4. the tread, the number of ribs and

grooves and tread design deter-
mine the wearing quality, tractions
and heat buildup of the tread.!

In order to better understand some
terminology which will be used later in
this article, refer to Figure 1, which
points out vartous components of a
maodern tread design.

it is the design of the tread which
leaves its telltale impression behind at
the scene of a crime and is, therefore,
the object of much interest among
those involved in forensic tire impres-
sion identification. In Tire Tracks and
Tread Marks by Given, Nehrich and
Shields the authors state,
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Toronto, Ontario, for one year and then transferred to Niagara Falls, Ontario,
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A motor vehicle is used in 75 per-
cent of all major crimes reported
today.?

or this reason that tire impressions

" G&¥ play such an important role in

saving investigative manhours as well
as providing valuable evidence in
court proceedings.

The scientific approach that engineers
have used in designing today's modern
treads can be used to the advantage of
the forensic expert in dealing with
crime scene impressions, as you will
see later in this article,

CHANGES TO TREAD DESIGNS

in 1845, an Englishman named Robert
William Thompson invented a new
type of tire which was made of a
rubber coated canvas tube covered by
leather.

This was the world's first pneu-
matic (nu-matick) tire which
comes from the Greek word,
meaning “wind or air”.3

‘Not until 1888, however, when the

i hmatic tire was reinvented did it
begin to achieve wide-spread use.
These early tires were completely baid
and a motorist was fortunate to travet
one hundred miles without aflat. Poor
road conditions were a majer concern
which led to the introduction of the
first tread designs to provide some
much-needed traction. The year was
1907.

The first traction design was the
Firestone fire design using the
words “Firestone Non-Skid” as
the design, credit is given to the
company’s founder, Harvey Fire-
stone.?

The other manufacturers soon intro-
duced their own tread designs and the
attempt to develop new and improved
designs has been going on ever since.

2. Tire Tracks and Tread Marks — Given,
Nehrich and Shields, page 1.

o

;%;e Story of Rubber — Firestone Canada
<=#d. Publication

4. Tread Designg Yesterday & Today — by
Addis Finney, page 36.

Goodyear's first tread design consisted
of well-defined, diamond-shaped ele-
ments. It was a successful design
which they continued to use on pas-
senger tires for many years.

As the condition of the early roads
improved and major routes began to
be paved these early button-type tread
designs used for traction gave way to
the continuous rib designs of the
1930's. These designs were more
suited to smoother roads and higher
speeds. The tread consisted of more-
or-less circumferential rows of tread
rubber separated by grooves, tn order
te improve traction on slippery sur-
faces, the use of sipes, or kerfs as they
are sometimes called, were introduced.
The main tire construction used during
this period in North America was bias
ply and it continued to be the most
common construction up until the
1960's,

in the mid 1960's the introduction of
the belted bias and. in particular, the
radial ply construction had a definite
effect on tread designs. The radial tire
was actually invented in 1813 by
Messrs. Gray and Sloper who obtained
a British patent for this construction.
Although the radial tire was commer-
cially produced as far back as the
1930’s it did not gain popular use in
North America untit the mid 1960's.
Since that time the radial tire has
continued to capture an ever increasing
percentage of the tire market untit
naw it is by far the largest seller of the
three basic tire constructions. It
appears consumers are prepared to
pay the higher cost for radial tires
since they provide such superior per-
formance and greater mileage.

Bias ply construction tires did not
have continuous rib designs by chance.
The early button-type traction designs
would nothave been able to withstand
the higher speeds that came with the
changing times. The aggressive trac-
tion designs would have destroyed the
tread because of the excessive amount
of tread squirm in the bias ply
construction.

The radial tire construction, however,
with its flexible sidewalls and rigid

belts greatly improved tread stabli-
zation. Less tread squirm has allowed
engineers to develop more open and
agressive tread designs that can take
today's high speeds. In a way, the
popularity of the radial tire has seen a
return to the early button-type tread
designs, although today’s designs are
much more sophisticated. To appre-
ciate this, one has only to walk into
one of the many tire showrooms and
examing some tread designs. The
radial tire with its well-defined, tread-
block shapes and intricate siping
treatment is the trend of the future,

The development and increasing
popularity of the all-season tread
design is yet a continuation of this
trend. Goodyear has achieved a great
deal of success with its curvilenal
tread design on the Vector and we can
expect to see similar designs on other
tires in the next few years.

NOISE TREATMENT — VARIABLE
PITCH

Every person working on forensic tire
impression identification should be
aware of tread design noise treatment
and variable pitch and how it applies
to the comparison process.

As was mentioned already, with
improved roads and automobiles came
increased highway speeds. The
smoother road surfaces and better
engineered cars also reduced previous
noise ievels. Now the sound produced
by early constant pitch tread designs
became unacceptable.

As a tire rolls over the road surface the

tread goes through three basic cycles:

1. The normal cycle before road
contact;

2. The contraction cycle as it makes
contact; and,

3. Theexpansion cycle as that section
of tread leaves the road surface.

This contraction of the tread design
which is illustrated in Figure 2 is
referred to as squirming in the tire
industry. The tire tread has distorted
ta conform to the flat road surface.
This has caused the ribs to squeeze
together and the grooves to close up a
lithe. This squirming is more of a
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prablem in the bias ply tire construction
and occurs to a lesser degree in the
Belted bias and radial ply construction
tires

In the tire industry, that area of the
tread which makes contact when the
tire is under|oad, and the impression it
leaves, is referred to as the tire footprint,
As each tread element goes through
the footprint in the contraction and
expansion cycle it actually vibrates
producing a tone or hum. it is the
squirming of the tread elements or
ribs which produces the sound. Smaller
elements will vibrate faster than will a
larger element, hence, they will pro-
duce a different tone. If alf the elements
were the same size they would produce
the same tone which would reach
unacceptable noise levels.

Different sized elements vibrate
at different speeds and produce
different tones. Since several dif-
terent tones vibrating atonce can
cancel each other out, tire hum is
eliminated by making the tread
- elements in several different sizes 5
:
By arranging these different pitch
iengths around the circumference of
the tire in various combinations the
design engineer looks for the optimum
noise treatment. A guote from an
article by The Firestone Tire and
Rubber Co. provides clarification of
pitch iength.

Point Height — Pitch Length Rela-
tionship — Another important
variable in the tread design is the
groove configuration. Most of the
tires in the field today contain
grooves which have a zigzag
appearance or, in more technical
terms, contain a specific point
height and pitch length.®

Figure 3 illustrates these terms.

5. Tire Performance and Construction —
ssources Development Corporation, page

é, 'Facrors Aflecting Passenger Tire Traction
on the Wet Road — J.D. Kelley, Jr.. The
Firestone Tire and Rubber Co., page 582.
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Today the designing process has
become very sophisticated with the
use of computer generated pitch

sequences. In Figure 4 {Courtesy of
The Firestone Tire and Rubber Com-
pany) we see Mr. Bill Waliet, manager

Typical tread groove pattern

Poiny
Haight




of tire design for Firestone, examining
a tread design pitch sequence on a
computer screen,

2> of their articles the BF Good-
ire Company gives this explana-

ric
tion:

A tire designer begins this tread
design process by creating a
series of geometric tread-block
shapes that are keyed into the
computer. The computer scales
and models these shapes into a
complete tire tread pattern. This
pattern's physical makeup is
translated into computerlanguage
$0 the computer can predict and
estimate certain performance
characteristics. The engineer

7. Research:and Development T/A High Tech
Radials - BF Goodrich Tire Co.

evaluates the tread's traction
capabilities by examining the
computer-generated, tread-void
ratio {area of rubber vs grooves
on the road), which is a deter-
minant factor in wet and dry
traction. Tire-emitted road noise
is evaluated through computer
analysis of tread block shapes
and their pitch sequencing.?

Al passenger tires manufactured today
use some form of noise treatment or
pitich sequencing, as it is also called,
to reduce tire-emitted road noise.
About the only tires which might not
use a noise treatment would be large
industrial tires which are used at low
speeds so that noise is not a factor.
Noise treatment is not something new
to the tire industry and, in fact, has
been in use since around 1930.

For the purposes of examining how
noise treatment is relevant to forensic
tire identification, we will be using the
Firestone Super 125 P225/70R 15 radial
tire in this article. In Figure 3 we
referred to the term pitch fength in
describing the groove pattern. Now
look at Figure 5b (on page 6) which is
a test impression taken from the Fire-
stone Super 125, You will note that the
pitch iength changes from the smallest
number one on the left and gets
progressively larger up to number
eight then reduces in unitJength again
progressively down to number one.
This change in pitch length affects the
size of the elements as well. if you
examine the elements in the inter-
mediate rib you will see they also
increase and decrease in size and
shape throughout the length of noise
treatment. On this particular tire the
pattern of noise treatment completes

4
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one quarter of the tire circumference.
7 The pattern wiil therefore repeat itself
" four times for the complete tire
jrcumference.

The noise treatment for some tires
may be similar to this tire in that they
increase and decrease in progressive
increments. The efement shapes may
be different and the pitch sequence
may appearas1,2,3,4,5,54,3,2, 1.

The pitch lengths may, however. be
arranged in any sequence which best
suits the particular design. For ex-
ample, the design engineer may decide
on three sizes of pitch lengths — large,
medium and small. These three unit
lengths can be scrambled in many
different arrangements to achieve
noise reduction, That may happen to
he L., MMM, SSSS, MM, completing
1/3 of the tire circumference. This
same sequence would then repeat
twice more to make up the entire tread
design. If a tire with such a design
fade a crime scene impression and
the crime scene impression was sub-
sequently compared to a full cfreum-
nce test impression from the
“ilgvered tire, an agreement in noise
- treatment could be established in
three iocations on the test impression.
This comparison process will be ex-
plained in more detail later on in this
article.

Another example using thres sizes of
pitch lengths — large, medium and
smalt is given in Figure 5a. In this
example the pitch lengths are arranged
in pairs — LL, MM, SS around the tire
circumference. To compiete the tire
circumference 30 pitch lengths were
used, 12 small, 10 medium, and 8
large. The pairs of pitch lengths have
been numberad 1 to 15 for reference
purposes oniy. If you examine the
pitch sequence from sections 1 to 8
and 10 to 15 you will note that they
occur in the same order. If a crime
scene impression was left by either of
these areas and then compared to a
testimpression from the offending tire
it would agree in two locations on the
st impression.

5

Now examine the pilch seqguence in
sections 7, 8, 9 and 14, 15, 1. These
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NOISE TREATMENT PITCH SEQUENCE
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areas contain an arrangement of pitch
lengths which are not repeated in any
other locations on the tire cirgum-
ference. if you are dealing with these
areas of tread design then you will be
able to locate the exact place in the
test impression from where the crime
scene impression came.

As well, you will find that when dealing
with very short sections of tread
design it will tend to fit into more
locations in the test impression,
because you are not working with
enough pitch lengths. Generally speak-
ing the longer the sections of tread
design you are working with the better
you will be able to locate the area in
the test impression from where it
came.

it will become apparentif you examine
test impressions from various tires
that noise treatments come in many
forms. Desigh engineers refer to these
arrangements of pitch sequences as
arithmetic and logarithmic noise treat-
ments. Tire tread designs are man-
made creations and virtuaily any com-

bination of pitch lengths that will work
are possible.

The number of fimes noise treatment
patterns repeat themselves on a tire
circumference will vary for different
tread designs. Some designs call for
patterns that repeat two, three or more
times. | have worked on cases where
the pattern repeats several times and
then one sequence of pitch lengths is
not found anywhere sise on the tire
circumference, as pointed out in
Figure 5a. With the use of computers,
some tread design noise treatments
do not repeat at all and, therefore,
have no two locations on the circum-
ference with the same arrangement of
pitch lengths.

The length of the noise treatment
pattern in Figure 5b which makes up %
of the circumference is 576 mm. This
is a tread design for a 15 inch rim.
Firestone maintains the same noise
treatment for different size tires by
making the treatment proportionately
larger or smaller to accommodate the
ditferent circumferences. This means
the same tread design ina 14 inch rim

5



size would have a shorter length of
noise treatment to fit on the smaller
tire circumference. Most tire com-
ies make their noise treatments
portionately larger or smaller to fit
the different tire sizes. This can be a
very useful aid in the comparison
process to differentiate tires with the
same tread design. There are some
tires made that maintain the same
length of noise treatment and add
extra unit lengths (pitch lengths) to
make up for the larger circumference.
Moving up in size, however, generally
increases the width of the tire which
will reflect itself in a change to the
noise treatment.

WEAR BAR INDICATORS

Also of importance in tire impression
identification are wear bar indicators
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and their relationship to the noise
treatment on the tire. Wear bars are
located in the grooves and run laterally
across the tread. (See Figure 1.) They
are raised one sixteenth of an inch
above the base of the groove. When
the life of the tread has expired, wear
bars show up as a bald strip across the
face of the tread. Wear bar indicators
may therefore show themselves in
crime scene impressions asillustrated
in Figure 6. Where the crime scene
impression lends itself to casting, the
three dimensional cast may also record
wear bars.

As can be observed in Figure 7, the
noise treatment pattern repeats four
times around the circumference and
the wear bar indicators are located at
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eight intervals. The Firestone Super
125 presents a particuiar relationship
in which wear bars always appear in
the same location with respect to
noise treatment in each quarter section.
As we have already mentioned, how-
ever, the number of times the noise
treatment repeats itself will vary for
different designs. Likewise the number
of wear bars may vary. On tires of less
than three hundred and five milli-
meters/twelve inches, there are at
least three indicators. Tires with a rim
diameter of three hundred and five
millimeters/twelve inches, or more,
have at least six indicators.

The major tire companies use a preci-
sion cast method for making their
aluminum alicy molds, This involves
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the use of plaster cast positives made
from master models to prepare any
number of identical tire molds. Using
method the wear bars are engraved

) the master models and therefore §L A Nfl‘-’,..s E
are located in the same place on alt tire
molds produced from these masters.

For companies producing a line of
tires which will have a lesser volume of
sales it wouid be too costly to use the
precision cast method. They may only
require two or three tire molds of a
certain type. For this reason they may
prefer to have each aluminum alloy
mold individualty engraved. Each indi-
vidual moid in this case may have the
wear bars placed in differentlocations
respecting the noise treatment, as well
there may be slight differences in the
noise treatment itseif.

NOISE TREATMENT/WEAR BAR RELATIONSHIP

VOL. 48. No. 1. 1987



NOISE TREATMENT/WEAR BAR RELATIONSHIP

Figure 8 shows another variation of
the relationship of wear bars to noise
treatment. In this case there are only
two locations that have the same wear
bar — noise treatment redationship.

Because of these variations, if wear
bars show up in crime scene impres-
sions, they ¢an help locate the area of
noise treatment that made the partic-
ular impression. In photographing
crime scene impressions and rmaking
plaster castsitis a good practiceto try
and include B00 millimeters/24 inches
of impression if possible. This will
generally record the location of two
wear bars if they are present. By
mé= uring the distance between the
wear bars, you will have another piece
of comparison information. In most
cases, wear bars are equally spaced

8

around the circumference, the larger
the rim size the further apart the wear
bars will have to be spaced. On most
tires wear bar indicators are quite easy
to observe in the grooves, in some of
the more intricate biock shaped tread
patterns the wear bars blend in very
well and can be more difficult to spot.
They will generally not be registered
in crime scene impressions unless the
tread is worn down to their level,

it should be pointed out that the
location of wear bar indicators in a
crime scene impression is a class
characteristic, since they are placed
there by the manufacturer and will be
in the same location on tires coming
from the same moids. Their presence
in crime scene and test impressions
does, however, indicate an agreement
in tread wear.

TIRE IMPRESSION COMPARISON
AND IDENTIFICATION

The comparison and identification of
tire impressions employs many of the
same techniques and principles in-
voived in the identification of footwear,

When comparing crime scene and
known tire impressions the examina-
tion may be broken down into three
basic steps of the scientific approach;

Analysis The determination that the
crime scene and test impressions are
tire impressions with similar class
characteristics and thus warrant closer
examinatjon.

Comparison The impressions are
then examined more closely for any
agreement of class and accidental
characteristics which may be present.

R.C.M.P GAZETTE




Evaluation Consideration is then

given 1o the degree of agreement or

disagreement of the class and acci-

dental characteristics in order to artive
st.an opinion.

By following these three basic steps
the examiner will have covered the
following areas of comparisorn:

1. Examined the overall class charac
teristics to determine if the crime
scene impression and suspect tire
are of the same tread design.
(Note: It may be possible to find the
same tread design on different
brand name tires. Some of the
rmajor tire manufacturers make tires
for other companies and may use
the same tread design changing
only the sidewall brand name.);

2, Checked to ensure that the crime
scene impression is the same size
as the suspect tire;

3. Searched for one or more locations
on the suspect tire impression that
could have made the crime scene
impression;

: Checked for any variations between
crime scene and test impressions;

5. Examined the crime scene and test
impression for agreement or dis-
agreement of tread design wear;
and,

6. Searched for the agreement of any
accidental characteristics present.

It is the quality and number of acci-
dental characteristics in agreement
which enables the specialistto make a
positive identification of crime scene
impression to suspect tire. There is no
set number of accidental character-
istics required to make a positive
identification. The reason for this is
that several factors enter into consider-
ation before an opinion is expressed
— the examiner's experience, the
unigueness of the accidental charac-
teristic and the clarity with which the
accidental characteristic is reproduced
2n the crime scene impression.

Each case must be judged on ifs own
merits. Care must be taken in expres-
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sing any form of opinion evidence.
Nothing wifl ruin your credibility more
quickly than the tendency to overstate
the value of your evidence.

The opinion may be expressed in one
of the following ways:

1. The crime scene tire impression is
identified as having been made by
the tire in question and that only
the tire in question could have
made the crime scene impression;

2. The chances of another tire having
the same agreement of class and
accidental characteristics isremote
or unlikely;

3. The crime scene tire impression is
consistant with having been made
by the suspect tire or any other tire
of the same tread design and size,;
and,

4, The crime scena tire impression is
not consistant with having been
made by the suspect tire in question.

Due to the fact that there may be four
different tread designs iocated in four
different positions on the vehicle, the
evidence can sometimes be quite
incriminating even in the absence of a
positive tire identification. This enters
the field of forensic vehicle identifica-
tion, which among other things also
considers vehicle dimensions recorded
atthe crime scene. This was discussed
in more detail in my previous article
“Tire Impressions as Evidence” (RCMP
Gazette, Vol. 44, No. 12, 1982).

DEFINITION OF ATIREFOCTPRINT
IDENTIFICATION EXPERY

Early on in my research of this subject,
| was put in touch with Mr. Peter
MacDonald who was then manager of
tire design for the Firestone Tire and
Rubber Co. in Akron, Ohio. At that
time he was good enough to answer
many questions and provide me with
some much needed information. Mr.
MacDonald, at that time, had assisted
some police forces on actual investiga-
tions involving tire impressions and
continues to provide assistance in this
area as well as lecturing on the
subject.

During my recent tour of the world
headquarters facilities for Firestone
and BF Goodrichin Akron, Ohio, 1 had
the opportunity to spend some time
with Mr. MacDonald and discuss at
length the science of tire impression
identification, He has now retired from
Firestone and opened a consulting
firm called Tire Forensics. His exper-
ience in designing tire treads for so
many years and in working with
several police forces on investigations
dealing with tire evidence has given
nim an excellent understanding of
forensic tire impression identificatior

We are both in agreement on the fact
that more information and training
should be made available to specialists
dealing with this type of evidence.

| thought you might appreciate seeing
two lists which Mr. MacDonald has
prepared to assist those working in
the field of forensic tire impression
identification. The lists are meant to
be used as guidelines to foliow and are
not intended to be interpreted as hard
and fast rules.

Definition of a tire footprint identifica-
tion expert is given in Figure 9. These
are all points which | feel would be
useful to the identification expert,
however, not all are necessarily a
requirement for becoming an expert
in this area. Most of the points are
self-explanatory, however, there are
two points, number four and number
nine which | wouid like to discuss
briefly.

Reading tire/mold drawings (point
number four) are, | feel, useful to have
if they are available. | have had the
opportunity to exarnine tire mold draw-
ings and study how they relate to atire
test impression. When you produce a
testimpression froma tire you are also
reproducing the design and dimensions
used to make the tire mold for that tire.
When you obtain the moid drawings it
is like having the key to unlock a
puzzle. It will provide you with the
arrangerment of pitch sequences used
by the tive designer for that tire's noise
treatment. Without the mold drawings
the pitch sequencing is very difficultto
figure out even for a design engineer

9



DEFINETION OF A TIRE FOOTPRINT FDENTIFICATION EXPERT

KHOMLEDGEABLE 1IN

4, Reading tire/mold drawings,

PROCEBURE

inked imprint of & suspect tire.

1. HMetheds of photographing tire imprints.
2. Methods of preparing prints and transparencies.

3. Methods of preparing plaster tasts,

5. Tire coastruction and aomenclature.

6. Tread patterns and sources of reference.

7. Tire mold and design features.

8. M¥ethods of obtaining inked imprints.

9. Methads of marking inked imprints with pitch sequeénce for analysds,

10. Standards for tire footprint identificatjon.

The recognized method is to compare an actual size transparency {Kodalith)
made from a photograph of an imprint or casting vs. & full eircumference

The foliowing standards chart identifies the major features to be reviewed.

9

from another company. However, as
you will see tater on in this articie, it is
- not necessary to know what the pitch
“muencing designation is for a tire
t impression in order to locate the
"~ area on the test which could have
made the crime scene impression.
Also, some tire companies would
refuse to supply such classified and
restricted drawings, so | feel one need
not be overly concerned if mold
drawings are unfamiliar to you or
unavailable for a specific case.

Methods of marking inked imprints
with pitch sequence for analysis {point
number nine) is along the same lines
as point number four. If you don't have
the mold drawings it is very difficult to
mark the inked impressions with the
same pitch sequencing used by the
manufacturer. It is important to be
aware of the fact that the pitch lengths
do change as you go around the tire
and that the crime scene impression
could only have come from cerain
iocations on the circumferance. As for
the actual pitch sequencing formula
s2ad by the manufacturer, that is not
@cal tothe comparison. Once areas
have been located on the suspect test
impression, using a full size Kodalith

10

transparency, both the testimpression
and Kodalith can be marked in your
own way in order to quickly locate
these areas again for comparison
purposes,

TIRE FOOTPRINT IDENTIFICATION
STANDARDS

The tire footprint standards are listed
in Figure 10a. This is a very detailed
list prepared by Mr. MacDonald to
assist tire identification experts in the
comparison and identification process,

Since you may not be familiar with the
purpose of each point listed | will take
the liberty of elaborating briefly on
them.

CLASS CHARACTERISTICS

These are features of the tread design
created during the manutacturing pro-
cess which are common to al tires of
that same size and design,

The class characteristics are sub/
divided into categories A and B.

Category A — Brand vs Brand

This compares one brand of tire with
another brand or even tires of the
same brand name, but of different

sizes, according to the following
characteristics:

1. Element shape — comparing ele-
ment shapes on one brand of tire
versus a similar tread design,
which has similar shaped elements.

2. Number of ribs — rib count on the
tread design. Inciudes a look at
the width of ribs as well.

3. Groove shape — sometimes the
groove shape stands out better
than the rib or element shape.
This may be easier to look at in
comparing two impressions or in
searching through the Tread
Design Guide in order to come up
with a brand name for crime
scene tire impressions.

4. Sipe pattern — sipes are thin
grooves in the ribs and slements,
Close examination® of the sipe
pattern can help distinguish be-
tween tires of similar tread designs
or element shapes.

5. Noise treatment — comparing the
noise treatment of a crime scene
impression using a full size Koda-
tith transparency can determine if
the tread is the same design and
size tire, and how many places on
the tire circumference could have
made the impression.

6. Arc Width — the width of the tread
design. Sometimes difficult to
measure on tires with rounded
shoulders. As a tire tread wears
down it can cause the measureabie
arc width to increase slightly on
designs which have rounded or
sloping shoulders. See Figura 10b
{on page 12).

7. Notches — a groove which enters
the side of a rib or element but
does not continue on through.
Check ribs and elements to see
that notches are in agreement
with crime scene impression.

8. Slots — a groove which runs tater-
ally across the tread from one
circumferential groove to the next.
Check for agreement between the
crime scene impression and the
suspect tire. Like notches they
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" can also change in appearance
with tread wear.

s, Void — look for agreement in
the area of rubber vs groove

~ gpace.

Stud pattern — some tires of same
' prand name and design may or
may not have stud holes in m/s
tires. The stud holes in crime
scene impressions should be in
agreement with area located in
test impressions.

_ Side treatment — this is the design
on the shoulder of the tire which
improves traction and alsg the
jook of the tire. From time to time
it shows up in crime scene
impressions.

12. Round shoulder vs square shoul-
der — this feature can sometimes
be quite distinctive in a crime
scene photograph or plaster cast

and help rule out certain suspect
tires,

13. Blackwall vs whitewall — some
tread designs and widths only
come with whitewalls or raised
white letters on the sidewall of the
tire. This may be useful to the
investigator in keeping an eye out
for possible suspect vehicles.

Basically when a comparison is made
for agreement of noise treatment, as
was pointed out in item number 5b, it
will automatically cover many of the
points just listed. As weil these points
listed under brand vs brand are not
only useful in comparing crime scene
impressions to suspect tire impres-
sions, but are also useful in searching
a crime scene impression through the
Tread Design Guide in order to come
up with a brand name and photographs
for the type of tire which made the
crime scene impression. The Tread

Design Guide and Who Makes It and
Where are both usetul reference
sources of tire tread designs published
every year by Tire Guide, The Tire
Information Center, P.O. Box 677, 14
Jackson Avenue, Syosset, N.Y. 11781,

Category B — Mold vs Mold compares
tires of the same tread design, which
may have discrepancies imparted by
different molds for the following:

1. Mold rotation — full circle molds
which have a top and bottom half
that close on the green tire in the
vulcanization process may not meet
exactly as intended. The top and
bottom halves may be slightly offset
and need readjustment. The full
circle mold produces a seam around
the circumference of the tread
design where the two halves met
when in the closed position. This
offset can sometimes be observed

y TIRE FOOTPRINT IDERTIFICATLION STANDAROS
-
" CLASS CHARACTERISTICS ACCIDENTAL CHARACTERISTICS
A | BRAND V5. BRAND MOLO VS. MOLD GENERAL o | sPECIFIE
t ELEMENT SHAPE MOLD ROTATION CIRC, WEAR V[ CuTs
2 NUMBER OF RI1BS TREAD WEAR IHDICATYORS LATERAL HEAR 2 | TEARS

1 GROOVE SHAPE

MOLD VARIATIONS

CUPPING

3 | CHUNK QUTS

4 SIPE PATTERN

SERIAL SI0E IN VS,

SERIAL SIDE OUT

HEEL AND TOE

4 [ STONE HOLDING

5 HOISE TREATMENTY

6 | ARC WIDTH

7 1 KOTCHES
8 | SLOTS
91 1 valo

10] STul PAYTERN

i
1" S1DE TREATHENT

12! ROUND SHO. VS, SQ.

?

*3° BLACK S.W. ¥S. WHITE

i

SXID DEPTH

5 ] TEXTURE VARLATIONS

EXPOSED TIE BARS

6 | ABRASIONS

FURRON WEAR

SIDE TREATMENT

YARIATIONS

ALL FEATURES [N SECTIONS A, B, ANC C ARE TO BE REVIEWED IF APPLICABLE, FOR CORRELATION

ALL FEATURES [N SECTION D ARE TO BE REVIEWED, IF APPLICABLE, FOR CORRELATION.

IT MAY BE POSSIBLE - WITH ORLY ORE {}) SPECIFIC ACCLOEKTAL CHARACTERISTIC TO HAKE A

POSIYIVE IOENTIFICATION,

SHOULD BE [OENTIFIED FDR A POSITIVE IDENTIFICATION,

HOWEVER, HORE THAN ONE (i) SPECIFIC CHARACTERISTIC GENERALLY

10a
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_in elements that do not meet pre-
cisely in this area. See Figures 11
and 12 which have slightly different
" ==mold offsets. In checking the serial
& nd mold numbers on the two tires
it was noted they came from dif-
ferent molds. In good quality crime
scene impressions this mold offset
can be detected and help eliminate
suspect tires with the same tread
design. If a mold offset becomes
more than a 1/10th of an inch it is
usually spotted and adjusted. Minor
offsels of this nature do not affect
tire performance or guality. A
second type of mold which is
becoring more common with the
advent of high quality radial tires is
the segmented mold. This mold is
separated into equal segments that
produce seams which run laterally
across the face of the tread. The
segmented mold does not have
mold offset problems.

2. Tread Wear Indicators — as already
mentioned they may be used fo
locate specific noise treatment area
an test impression which may have

g *;-nadecrime sceneimpression. They

“=nay also help eliminate similar
suspect tires if wear bar location or

distance between them is not in
agreement.

12

3. Mold Variations — the small metal
plates in the tire molds which
produce the sipes in the finished
tire are thin and may become bent.
This would then produce a tire
which had distorted sipes in a
particular location. GQuatity control
in the tire industry is of a very high
standard and this would be a rare
occurrence and corrected as soon
as it was detected.

4. Serial Side In vs Serial Side Out

-—The serial tin side is the side of
the tire which has the serial number
recorded on it by the serial tin plate
in the bottom half of the mold. The
serial number is embossed on the
inner sidewall and mounted on the
inner side of the rim. The outer
sidewall contains such things as
raised lettering and whitewall mark-
ings. In cases of directional tread
designs if the tire is mounted on the
rim in reverse {serial side out) it will
change the direction of the impres-
sion left by the tread design. It is
uncommon to have directional

" treads mounted in the wrong direc-
tion so this could be another variable
1o watch for in tire comparison.

ACCIDENTAL CHARACTERISTICS
In forensic tire identification these

would be cuts, tears and wear features
placed on a tire as a result of being
subjected to the functions it performs
as a vehicle component. Accidental
characteristics may also be marks
unintentionally made by the manu-
facturer bhut not reproduced in sub-
sequent tires. {Such as small nicks or
cuts made in the vent trimming
process.)

Accidental characteristics are subdi-
vided into C and D categories:

C — General — Routine or irregular
wear to the tread design as it changes
throughout the life of the tire. As a tire
functions as a vehicle component it is
subjected to various stresses which
cause the tread to wear away. Mechan-
ical problems with the vehicle can
cause accelerated or irregular tire
wear. The squirming action of the
tread elements as they make road
contactalso scrubs away tread rubber,
The first several thousand miles pro-
duce the fastest tread wear. As the
tread elements become shorter, they
are less flexible and squirming is
reduced, s0 the tread wear slows
down cansiderably. One could expect
a small accidental characteristic to
tast longer on a well worn tire than on
anew one, all other things being equal.

1. Circular Wear This is a description
of how the tire is worn around the
circumference of the tire with sipes
and grooves indicating amount of
wear. As a new tire tread wears
away it can often change its appear-
ance from the basic design. Most
tires being made today use siping
of two or three different depths.
Seme of the sipes will go all the
way to the botiom of the pattern
depth, while others will only go
down part way. The solid rubber
under the shallower sipes is referred
to as tie bars, see Figure 13. The tie
bars are necessary to hoid the
tread elements rigid so they do not
sguirm too much. Less squirm
saves on heat bhuildup and tread
wear life. When the tread wears
down to the tie bars, it changes sipe
appearance. Consequently there is
less siping on a worn tire than on a
new tire, as arule. This is something
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which is of concern to tire manufac-
turers because it does notcreate its
own problems.

One criticism of present day
siping practice might be that
too many are used for styling
considerations, and that they
are made less than fuli depthin
part of their length in order to
maintaintread element stability.
As a result, the siping pattern

. parily orcompletely disappears
during the latter part of the
tread life, just when the shal-
lower design depth makes sipes
most needed 8

Some of today's high performance
tires are using designs with weil-
detined, tread-biock shapes that
do not have sipes in the design at
ali. instead these designs rely on
grooves, lateral slots and notches
to prevent hydroplaning and im-
prove traction.

Examine Figure 14 (on page 14) to
see how the sipes and notch design
has changed in new and worn tires
of the same design. This is an
important factor to consider when
doing comparisons. it may help
eliminate a similar tire as not being
responsible for the crime scene
impression.

. Lateral wear — tread wear from a
oss-sectional perspective.

. Rubber World — Tread Designs: Yesterday
& Today by Addis Finney,
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3. Cupping wear — depressions ora
cupping effect in the tread design
caused by some excessively loose

12

suspension part which ailows the
wheel to oscillate according to a
frequency pattern. The location of

13
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the depressions would accur ran-
domtiy in the noise treatment around
the tire circumference.

teel and Toe — wearing down of
ribs or elements so that they are
lower on one side than they are on
the other. The low wear end is
referred to as the heel and the
higher part as the toe. This is the
type of wear you might expect to
see on the front tires of a vehicle
which has incorrect toe-in or toe-
out settings.

. Skid Depth — The amount of

measureable tread left on the
suspect tire as compared to that
recorded in the crime scene impres-
sion. Most of the tread designs
today start as a depth of 11/32 to
12/32 of an inch, Mud and Snow
{M/S} type designs mostly start at
around 14/32 to 16/32 of an inch.
The recognized measurement for
tread depth in North America is
recorded in 1/32" intervals with the
use of a tread depth gauge. The
gauge is inexpensive and can be

purchased at most auto supply
outiets. This device can be used at
the crime scene to measure tread
depth in three dimensional impres-
sions where possible as well as
recording the tread depth on
suspect tires,

You are not necessarily trying to
record the same measurement
between crime scene and suspect
tire, but whether the suspect tire
could have made the crime scene
impression. For example, if the
recorded tread depth at the scene
was 8/32" and the suspect tire
tread depth was 10/32" then it
could have made the impression
without recording its full tread
depth. On the other hand if the
suspect tire tread depth was only
4/32" it coutd not have made the
crime scene impression.

When the tread depth is worn to
2/32" the wear bar indicators will
begin to appear as a solid bar of
rubber across the tread.

6. Exposed Tie Bars — As mentioned

in circular wear, when the tread
design wears down the tie bars in
the sipes, notches and lateral siots
become exposed in varying
amounts around the circumference
of the tire. This changes the appear-
ance of these features in the design.

7. Furrow Wear — Sometimes referred

to as erosion wear and mare com-
monly seen in truck tires. Because
grooves do not run in a straight line
and tend to zigzag there are sharp
points along the groove where it
changes direction, When the tire is
rolling the points tend to bend and
tuckinto the grooves because they
are less supported. They deflect
and then spring back after coming
outof the compression cycle. Since
they bend into the groove they
don't wear as quickly as the sta-
blized areas which make solid road
contact. This causes irregular fur-
row wear along the groove around
the circumference of the tire.

SIPING  PATTERN

PARTLY OR_COMPLETELY DISAPPEARS

MID TREAD LIFE

A \

LATTER STAGES
I
P 0 A G

14
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p— $pecific Definite and
jormulated marks of wear
msg,ff.cientnumber and quality
the e unique.

_ 7This would refer to cuts
wcted to the tread design by
¢p objects such as rocks, glass,
atire tread will cut much easier
n it is wet since water tends to
as a lubricant. Often stones
ome lodged inslots, notches or
" ones which can tend to drill them-
- geives into the tire during the
 gontraction and expanston cycle.
" Yhis can cause cuts and tears to
sppear frequently in these areas.

fears — arip ina rib or element
" wnning across the surface of the

fread.

Chunk outs — tread elements can
pecome excessively hardened by
ozone in the atmosphere and do
not flex as easily as they should.
This may cause chunks of tread
rubber to be torn off when they
come in contact with sharp or
. ough surfaces. Excessive tread-
ement movement can also cause
“shunk outs” by heat buildup and a
weakening at the base of the
elements.

4. Stone Holding — stones picked up
and held in the tread design which
are ‘odged in specific locations in
the noise treatment.

5 Texture Variations — scratches or
striations on the surface of the
tread.

6. Abrasions — tears or large cuts in
the shoulder or sidewall area of the
tire.

7. Side Treatment Variations — any
odd shaped minor cuts, scratches
etc., to the shoulder or sidewall
area of the tire.

ACTICAL APPLICATION TO

ME SCENE IMPRESSIONS

Now lets take a look at how this theory
applies in practice with the same tire
‘used in Figures 1.5, and 7.

VOL. 49, No. 1, 1987

Tire impressions left at the scene of a
crime come in many shapes and
forms. For the purposes of this case
study | have used a two dimensional
dust impression recorded on a flat
surface. The procedures and tech-
niques of comparison used in this
case study, will also work equally well
for other forms of tire impression
evidence, the success of which wili
depend on the quality of those
impressions.

The tire was mounted on a vehicleand
driven over paved roads and then
parked in a paved parking lot with no
other special attention given 1o it.

The vehicle was then driven over a
piece of cardboard box {as seen in
Figure 15) obtained from a local store.
The exhibit was then recovered. If the
direction of travel and tire location is
known for the vehicle it should be
marked on the exhibit. In thi3 case
from evidence at the scene if | knew it
was the right rear tire that had made
the impression | would mark it as
such. As well, if direction of travel can
be determined | place an arrow on the
exhibit or in the photograph pointing
to the front of the vehicle. This arrow
acts like the laterality letter R in
fingerprint photography. Most tread
designs are non-directional and when

reversed will appear the same, since
one half of the tread design is like a
mirror image of the other. By having
the arrow in the photograph or on the
exhibit you will always know which is
the inside and outside edge of the tire
impression. Marking the impression
by placing the letter B or designation
of tire position wili also help maintain
lateraiity in the darkroom, but this is
ovetr and above some method of
marking for inside and outside edge of
the impression, if that fact is known.

This type of impression is not easily
observed since it is light colored on a
light surtace, It can be seen from an
oblique angle, however, itis difficult to
photograph. Using a technique which
is well known in footwear identification
the dust impression was lifted using
the carbon paper method. Thisinvolves
securing the exhibit from moving and
covering it with a 14" x 17" sheet ot
carbon paper. The carbon paper is
then held from slipping while it is
stroked with a piece of fur or like
substance to create static. The carbon
paper was then removed and contained
a reversed lift of the dust impression.
The arrow to maintain direction to the
front of the vehicle was transferred to
the carbon paper using a grease
marker. A reversed letter R was then
marked on the carbon paper so when
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excellent dimensional stability. in tests
conducted to measure tire footprint
geometric characteristics C.E. Pretty-
man reported this concerning a size
FR78-14 steel belted radiai tire which
he examined.

As the tire is loaded the footprint
at first grows in two dimensions;
but after the full footprint width is
obtained at about 300 ib load,
further growth is achieved only
along the length of the footprint.?

30 it the suspect tire arch width is
1arrower than crime scene impression
arch width by a measurable amount,
say Y inch, and no explanation can be
‘ounz, the tire may be ruled out.

I TheFirestone & Rubber Co, — Computarized
Tire Footprint Areas Measurements, by CE.
Frettyman.

COMPARISON OF CRIME SCENE
TO TEST IMPRESSION

Using the negative of a crime scene
impression, the examiner can prepare
a full size photograph and Kodalith
transparency. This technique works
well for two dimensional and three
dimensional crime scene impressions.
However, in the case of a three
dimensional impression, Kodaliths
prepared from piaster casts work
better since the cast can be photo-
graphed at the studio under controiled
lighting conditions. The cast also
provides very accurate dimensions for
one to oneenlargements. Nevertheless
I have used Kodaliths prepared from
all three types of impressions with
good resuits.

Inthe case study used for thisarticle a
full size photograph and Kodalith
transparency of the dust impression
lifted with the carbon paper, was

prepared for comparison to the test
impression of the Super 125. The
arrow on the Kodalith and photograph
were iined up in the same direction as
the arrow on the test impression. The
transparency was then moved along
the test impression to see if the noise
treatment could be matched (see
Figure 21).

If the dust impression lifted with
carbon paper had been made by a
different size tire of the same design,
the noise treatment wouid not have fit
in this case, since it would have been
proportionately larger or smaller. As
well, if the wear to the sipes, notches
and grooves was not consistent the
test impression could have been ruled
out.inthis case l alsohad a Super 125
of the same size mounted on the left
rear side of the test vehicle. The jeft
rear tire was worn to a greater extent
and when its test impression was
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lettered A to | in agreement with the
dust impression lifted from the card-
board box exhibit.

Figure 25 shows the accidental charac-
teristics lettered A to | located on the
suspect tire. Small markers have been
placed on the tread elements pointing
to the cuts in question for quick and
easy reference.

In cases invoiving three dimensional
impressions in soil or snow | have
prepared full size photographs and
Kodaliths to search the suspect tire
test impression. When areas of noise
treatment agreement are located on
the test impression | mark them for
~ence. In a case where no sub-
stantial wear or accidental charac-

20
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teristics are present there will be one
ot more locations which are consistent
with the crime scene impression. For
demonstration purposes, | have found
in mostcases, that if | photograph one
of these areas on the test impression
and prepare a full size Kodalith from
the negative, and then place the test
impression Kodalith over the crime
scene photograph, it will better display
the agreement of noise treatment.
This is because the test impression
has much better contrast and will
produce a Kodalith which is easier to
ook through. This procedure creates
the perspective of being inside the tire
iooking through the tread design and
seeing how the various elements could
have made the three dimensional
depressions in the soil or snow.

As was already mentioned, it is very
important to ensure that the ruler is in
the same plane as the crime scene
impression when taking the photo-
graph. Then if care is taken in the
darkroom to produce an accurate full
size Kodalith it will reflect the proper
dimensions for the noise treatment on
the tire which made the crime scene
impression. For two and three dimen-
sional impressions recorded on a
smooth surface the Kodalith made
from them should produce a very
accurate fit with a test impression
from the same tire, since the test
impression is also recorded on a flat
surface. To illustrate this, | refer to a
recent case which involved several
large thefts of fuel from oil rig sites in
the southeastern part of Saskatchewan.
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ny 1985 tour of Firestone Head-
guarters in Akron, Ohio.
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The Lighter Side — Kiss Wasn't Assault

Reprinted from the Police Review, May 4, 1984 edition, London, England

A baker who kissed a policeman on
the lips was held to be not guilty of an
assault on police. The sheriff for the
Highlands and Islands was giving
judgement in a case in which police
alleged that the baker, after being
given help with his broken-down car,
became abusive, and was put into the
back seat of the police car.

WO At No 1 19R7

PC Derek Mitchell said that the baker
continued to abuse him, then started
blowing kisses at him, and finally
kissed him on the lips.

The Glasgow Heraid quoted from the
sheriff judgement; “It is impossible to
say from the evidence whether this
kiss was an act of retaliation, a spon-

taneous gesture of affection, or an
irresistible sexuat impulse. . . . Merci-
fully, the nature, extent, and vigour of
the kiss planted on PC Mitchell’s lips
was not explored in evidence. | shail
regard it as an unusual but justifiable
act of retaliation which | fervently
hope does not become a general
practice.”
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FRONT AND REAR COVERS: This issue is devoted to the science of tire impression
« i identification (see page 1).
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Dear Mr, Eric Lander & PCAST colleagues,

The Organization for Scientific Area Commilttees, Friction Ridge Subcommittee
respectfully submits the attached response to the PCAST "Call for Additional
References” regarding the 2016 PCAST Report on Forensic Science.

We appreciate the attention the PCAST has given to this matter and are
available if we may be of any further assistance.

Sincerely,
Henry Swofford

Vice-Chair, Friction Ridge Subcommittee
Organization for Scientific Area Committees
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Organization of Scientific Area Committees
Friction Ridge Subcommittee

Response to Call for Additional References Regarding:

President’s Council of Advisors on Science and Technology
REPORT TO THE PRESIDENT
Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods
14 December 2016

The Organization of Scientific Area Committees {(OSAC) Friction Ridge Subcommittee (FRS) is thankful for
the attention of the President, and other relevant members of the Executive Office, including the
President’s Council of Advisors on Science and Technology (PCAST), to ensure forensic science methods
are adequately resourced, properly evaluated, and appropriately applied in practice to safeguard the
validity of forensic evidence used in the Nation’s legal system. The QOSAC, a bedy of over 500 forensic
science practitioners and other experts who are drawn from local, state, and federal agencies;
academia; and industry, share this concern and demonstrate commitment by voluntarily serving on
various subcommittees with the overarching intent to develop and promulgate forensic science
consensus documentary standards and guidelines, and to ensure a sufficient scientific basis exists for
each discipline. By nature of its mission, the OSAC FRS acknowledges, and agrees with the PCAST, that
there is a need to establish a more formalized research agenda, develop standardized practices, and
promote foundational research. Overall, the OSAC FRS considers the PCAST report to be well written
and clear with respect to their evaluation criteria and strategic way forward. The aspects of the report
the OSAC FRS believes could be further clarified and elaborated upon are:

(1) The OSAC FRS agrees with the PCAST that there is a need for additional research to build upon
an established body of knowledge; however, we disagree that prior research efforts should be
disregarded or discounted in their entirety.

{2} The PCAST states black box studies are the only means of establishing foundational validity for
subjective feature-based methods and “[iln the absence of such studies, a subjective feature-
comparison method cannot be considered scientifically valid”. (p. 66). While the OSAC FRS
agrees with the need for black box studies to evaluate the overall validity of a particular
method, the OSAC FRS is concerned this view could unintentionally stiffe future research
agendas aimed at dissecting the components of the black box in order to transition it from a
subjective method to an objective methed. if the PCAST maintains such emphasis on black box
testing as the only means of establishing validity, the forensic science community could be
inundated with predominantly black box testing and potentially detract from progress on
understanding and refining other foundational aspects of the method, such as those previously
outlined by the OSAC FRS, in an effort to identify ways in which to emphasize objective methods
over subjective methods {see https://www.nist.gov/topics/forensic-science/osac-research-
development-needs). Given the existing funding limitations, this will be especially problematic
and the OSAC FRS is concerned other foundational research will thus be left incomplete,

{3} The OSAC FRS notes that the PCAST appears to discount or otherwise disregard the role of
“experience” and “judgment” in subjective feature-comparison methods. While the OSAC FRS
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does value empirical testing as hierarchically greater than experience and judgment, they do
play an important role and should not be disregarded in their entirety. The disregard for
experience and judgment is reminiscent of what was initially proposed by the Evidence Based
Medicine (EBM) movement in the early 1990’s. Cohen et al. (2004) in the context of medicine,
cautions that experience and judgment remain important elements, especially in situations in
which the circumstances of a particular case is underrepresented by empirical tests. (see Cohen
et al., “A Categorization and Analysis of the Criticisms of Evidence Based Medicine”.
international Journal of Medical Informatics, 73 (2004} 35-43). Similar principles may be applied
to the forensic sciences. Accordingly, the emphasis should net be on blindly banning knowledge
gained and assessments made on the basis of experience and judgment; rather, the emphasis
should be on clearly distinguishing the source of such knowledge and transparently reporting its
basis and associated limitations.

The PCAST considers the error rate for latent fingerprint analysis to be "substantial” with
estimates that an error may be expected to occur up to 1in every 306 cases {based on the
FBI/Noblis study) and 1 in every 18 cases {based on the Miami Dade study). Further, the PCAST
states “the actual false positive rate in casework may be higher” {p. 101}, The OSAC FRS has
some concerns with the approach used by the PCAST to arrive at those estimates.

a. The PCAST based their quoted estimates on only a subset of the examination
methodology. Itis common practice within the latent fingerprint community to ensure
conclusions have been verified by a separate examiner prior to a conclusion being
released. While the OSAC FRS recognizes that many laboratories may not perform
“blind” verifications, the error rates quoted by the PCAST did not consider any
verification being performed. Accordingly, the error rates quoted by the PCAST do not
necessarily reflect actual casework methodology. Both the FBI/Noblis study and the
Miami Dade study demonstrate that false positive errors reported by one examiner
were rarely reproduced by a second examiner. Taking this into consideration, in
practice, the error rate is expected to be lower, perhaps to a substantial degree, than
those values reflected by the PCAST.

b. The PCAST stated “because examiners were aware they were being tested, the actual
false positive rate in casework may be higher” (p. 101). Based on that statement, it
appears the PCAST was referring to the Observer “Hawthorne” Effect. The Hawthorne
Effect suggests that test subjects may modify or improve an aspect of their behavior in
response to their awareness of being observed. The implication of the PCAST is that the
error rates observed in the study may represent a lower error rate than what may be
expected in casework. While the OSAC FRS recognizes the Hawthorne Effect could be
applicable in this situation, the OSAC FRS also notes the research was conducted in an
anonymous fashion (as appropriately required by Institutional Review Boards) and
participants may paradoxically behave less accurately when they know their identity is
concealed and there are no downstream consequences to an incorrect response. Lelkes
et al. (2012) observed this phenomenon stating that total anonymity “consistently
reduced reporting accuracy and increased survey satisficing [and] complete anonymity
may compromise measurement accuracy rather than improve it.” (see Lelkes et al.,
“Complete Anonymity Compromises the Accuracy of Self-Reports”. Journal of
Experimental Social Psychology, 48 (2012) 1291-1299). Although the OSAC FRS does not
have empirical evidence to substantiate what the actual rate of error is in practice, the
OSAC FRS believes strongly that it is not on the level of magnitude reported by the
PCAST. If this were true, considering the prevalence of friction ridge evidence examined
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on an annual basis around the country, the criminal justice system would be inundated
with non-corroborative evidence which would draw considerable attention to the issue.

c. The PCAST considers the quoted error rates for the latent fingerprint discipline as a
combination of both human/technical failures and coincidental matches and
recommends those error rates be reported to the courts. While the OSAC FRS supports
the suggestion to provide error rates to the courts, those rates should be accurately
calculated, relevant to the circumstances of the individual case, and appropriately
articulated. The error rates quoted by the PCAST are generalized across a sample set of
iatent fingerprints In which their qualities represent the least favorable conditions that
may be observed in casework. Accordingly, while on average, the quality of samples
utilized in those studies may be consistent with the average quality of “difficuit” or
“complex” samples examined in casework, the error rate should not be generalized as a
single rate of error for all latent fingerprint casework; rather, the error rate should he
relevant to the quality of the fingerprint in the case at hand, as noted by the PCAST with
the statement, “[t]he false positive rate for latent fingerprint analysis may depend on
the quality of the latent print.” {p. 50}, The OSAC FRS agrees with the PCAST that error
rates should be conditioned upon the quality of the fingerprint sample and encourages
this research to be carried out. In the interim, the OSAC FRS believes it is appropriate to
inform the fact-finder that the error rate in the case at hand may actually be lower than
those observed in the black box studies considered by the PCAST. The OSAC FRS
believes this is appropriate because the error rates quoted by the PCAST were
calculated on the basis of an incomplete methodology (see sub-section 4a), under
conditions which do not reflect actual casework (see sub-section 4b), and are not
conditioned on the quality of the fingerprint sample in the case af hand, Taking these
points into consideration, If the friction ridge community were to report error rates
quoted by the PCAST without providing appropriate context, the friction ridge
community could unduly bias the fact-finder to either undervalue the “true” value of
the evidence {in the case of very high quality evidence) or overvalue the “true” value of
the evidence {in the case of very low quality evidence).

d. The PCAST relies heavily on the “Miami-Dade” black box study as a means of estimating
the error rate for the latent fingerprint discipline. The QSAC FRS notes that the PCAST
failed to detect the calculation error in the false positive rate reported by Miami Dade.
The false positive rate is calculated as the number of false positive responses divided by
the number of opportunities to make a false positive response {(conditions in which non-
mated samples were presented to the study participant). The Miami-Dade study
differed from the FBI/Noblis black box study in that the FBI/Noblis study consisted of a
single latent impression compared to a single reference impression (hence a faise
positive could only occur in a non-mated trial). The Miami-Dade study, on the other
hand, provided participants with multiple reference impressions for each trial; thus,
even for the trials which contained a mated source, there were also non-mated sources
which could have resulted in a false positive response. Indeed, of the 42 false positive
results, 39 of them were made to an incorrect reference print during a mated source
trial. Accordingly, the accurate calculation for the false positive rate in the Miami-Dade
study is 42 false positive responses divided by 3,687 trials in which a false positive
response could have occurred and in which a conclusive response was rendered (1,398
non-mated source trials and 3,138 mated source trials with non-mated source reference
prints minus 849 inconclusive decisions among both mated and non-mated sets).
Rather than a false positive rate of 4.2% (42/995)}, as stated by the authors and guoted
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by the PCAST, the actual faise positive rate is 1.1% (42/3,687). The upper bound of the
95% confidence interval then becomes 1.5% {not 5.4% as originally calculated by the
PCAST). Further, if the 35 false positive responses believed to be due to clerical errors
were removed, the observed false positive rate is 0.19% (7/3,687). The upper bound of
the 95% confidence interval then becomes 0.39%.

{(5) The PCAST states “[s]ubjective methods can evolve inte or be replaced by objective methods.”
(p. 47). The OSAC FRS recognizes the integration of objective methods to measure similarity
compared against a pre-defined “matching” criteria will certalnly be a step in the right direction;
however, the OSAC FRS believes it is a mistake to expect that objective methods will fully
replace the subjectivity of the human examiner. The human examiner will continue to serve as
a critical, albeit subjective, element of the broader methodology. Rather than entire
substitution, the human examiner and the measurement instrument will need to work
comptementary to one another. This is how science of all sorts is practiced.

In clasing, the OSAC FRS appreciates the attention and commitment to improving forensic science
demonstrated by the PCAST, the President, and other members of the Executive Office. The OSAC FRS
beiieves the forensic sciences and, latent fingerprint analysis in particular, are on the right path forward
to build upon an existing foundation of knowledge, improved standards and guidelines, and strategies to
transition elements of the methodology which rely on subjective judgment into objective
measurements. The OSAC FRS looks forward to a joint commitment to this effort by the general
scientific community.
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December 13, 2016

Dear PCAST,

You have invited additional commentary on your Sept 2016 report, “Forensic Science in the
Criminal Courts: Ensuring Scientific Validity Of Feature-Comparison Methods.” Our comments
will focus specificaliy on DNA.

You ask:

Please identify any relevant scientific reports that (i} have been published in the
scientific literature, (ii) were not mentioned in the PCAST report; and (iii) describe
appropriately designed, research studies that provide empirical evidence establishing
the foundational validity and estimating the accuracy of any of the following forensic
feature-comparison methods, as they are currently practiced:

DNA analysis of mixed samples with three or more contributors, in which the
contributor in question represents less than 20% of the sample.

Please indicate how the scientific reports establish foundational validity and estimate
the accuracy of the relevant method.

Our group (Professor Keith Inman, Dr. Kirk Lohmueller, Dr. Norah Rudin) has been working
specifically on this problem over the last several years. The work has been funded by NIj grant
#2013-DN-BX-K029. We will be able to provide our final report when it is completed at the end
of this month. In the meantime, we attach a draft of the abstract and executive summary. We
also attach our published papers to date that address these issues. Initial results and
conclusions that specifically address your requests will be discussed in the report. Manuscripts
that will expand on the work will be submitted to peer-reviewed journals over the coming
year. Importantly, the curated data set that has been generated, which comprises 800 complex
samples of up to 4 contributors, and over a wide variety of template amounts and contributor
ratios, will be made publicly available.

We have several further questions and comments regarding the final PCAST report.

In the report you cite a publication that mentions validating mixtures of which the minor
contributor is 20% or more of the sample. Could you please specify the publication on which
you are relying for this statement?

On page 75 of the PCAST report, you offer a definition of a complex mixture as follows:

DNA analysis of complex mixtures—defined as mixtures with more than two
contributors—Is inherently difficult and even more for small amounts of DNA.

The citation you reference is the SWGDAM guidelines (2010).

We suggest a more inclusive definition of a complex sample (not merely a mixture) as one that
exhibits one or more of the following characteristics: (Butler 2015)




* A low template sample containing DNA from one, or more than one, individual in
which dropout may have occurred

* A mixture of two or more individuals

* A sample that suffers from degradation

* A sample that suffers from PCR inhibition

Each of these circumstances conspires to introduce additional ambiguity that further
complicates interpretation of the sample. Essentially any sample for which the full and
complete genotype of individual donors cannot be determined with certainty should be
considered a complex sample. Probabilistic genotyping approaches are designed to model
these types of ambiguous profiles. No binary approach, RMP, CPI or otherwise, can adequately
account for the ambiguity inherent to these samples. Omitting, for example, a low template
single source sample with the possibility of dropout from your definition implies, incorrectly,
that a CPl is an appropriate method of providing a weight of evidence for such a sample.

We were surprised and concerned to note the substantive addition that occurred between the
draft and final PCAST report. Specifically, the conclusion that the CPI should be summarily
dispensed with is followed by an edict that allows it to be used following the procedure
outlined in Bieber et al. 2016 (Evaluation of forensic DNA mixture evidence: protocol for
evaluation, interpretation, and statistical calculation using the combined probability of
inclusion). Even more surprising, PCAST endorses this paper without, by their own admission,
having adequately reviewed it. This does not seem in keeping with the rest of the well-crafted
report. We have read the Bieber et al. paper and find it to be at odds with the basic scientific
premise that PCAST espouses, e.g.,, that procedures should be foundationally valid, and based
on ground truth samples. The Bieber et al. paper lacks any foundation in experimentation
based on ground truth samples, Instead, it just continues the unfortunate legacy of binary-type
approaches (CPI, CPE, RMNE, 2P etc.}, none of which have ever been subjected to large-scale,
rigorous validation. Although many forensic DNA practitioners agree, at least in theory, that
probabilistic genotyping must replace binary methods, the agreement is not universal
Resistance remains, and there are those who will look for any endorsement to support the
continued use of historical approaches. Our fear is that this unfortunate last minute addition to
the PCAST report will allow the CPI and similar approaches to be used for the foreseeable
future, as they now have the imprimatur of PCAST.

Y -

Keith Inman M.Crim

Metllof

Norah Rudin_, Ph.D.

Kirk Lohmueller, Ph.D.
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A number of new computer programs have recently been developed to facilitate the interpretation and statistical
weighting of complex DNA profiles in forensic casework. Acceptance of such software in the user community, and
subsequent acceptance by the court, relies heavily upon their validation. To date, few guidelines exist that de-
scribe the appropriate and sufficient validation of such software used in forensic DNA casework. In this paper,
we discuss general principles of software validation and how they could be applied to the interpretation software

53?::&?,; now being introduced into the forensic community. Importantly, we clarify the relationship between a statistical
Likelihood ratio model and its implementation via software. We use the LRmix program to provide specific examples of how
Probabilistic these principles can be implemented.

Genotyping © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd, All rights reserved.
Strength of evidence

LRmix

1. Background and scope generally accepted guidelines exist to establish their validity for use in

A number of new computer programs have recently been developed
to facilitate the interpretation and statistical weighting of complex DNA
profiles in forensic casework (for a review, see [1]). Complex profiles
may encompass a multitude of confounding factors resulting from
DNA profiling of a low quantity and/or low quality biological sample.
The resulting profile may contain multiple contributors, may lack infor-
mation from the true contributors (allelic drop-out), may include extra-
neous information unrelated to the crime-sample information (allelic
drop-in), and may suffer from degradation or inhibition [2].

It is now accepted throughout the world-wide forensic DNA com-
munity that a likelihood ratio (LR) approach is required to reliably inter-
pret these types of profiles [3]. Accordingly, recent years have seen a
proliferation of probabilistic models, implemented via software, offered
to the community as solutions to this problem, Although these probabi-
listic models rely on different assumptions, and make use of different
types of information, they all enable the evaluation of evidence within
a LR framework. While these software programs have proven generally
useful to facilitate the interpretation of complex DNA profiles, [4-7], no

* Corresponding author at: Netherlands Forensic Institute, Netherlands,

http://dx.doi.org/10.1016/j.scijus.2015.11.007

forensic casework. Model validation for use in forensic casework is not
straightforward because the true weight of the DNA evidence cannot
be determined; indeed, the generated LR always depends on the
model's assumptions, no ‘gold standard’ exists in the form of a true like-
lihood ratio that can serve as a comparison [8,9].

In this paper, we offer a set of definitions and examples that aim to
provide guidance in validating software for casework use, We first in-
troduce some general definitions of model and software validation
taken from existing fields. We then propose a set of considerations for
validating software for forensic use. We illustrate the application with
the LRmix program [10], which has been validated for casework use
and introduced into a courtroom setting,

2. Definition of validation

Forensic science is not the first discipline to face the challenges of
maodel and software validation. Consequently, it is possible to learn
from the experience of scientists working in different fields. We follow
Rykiel [11] in his definition of model validation (originally applied to
the field of ecological science). This paper is highly cited and is effective-
ly regarded as a ‘standard reference’. We regard model validation as a

1355-0306/0 2015 The Chartered Saciety of Forensic Sciences, Published by Elsevier Ireland Ltd. All rights reserved.
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(data validity)
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Computerized model

/

Computer-program enabling
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Fig. 1. Simplified representation of the model development and validation process, The diagram shows the different stages of conceptual, operational and software validation (modified

from [11]).

process that results in an explicit statement about the behavior of the
model (and subsequently the software). In the case of an interpretation
model, such a statement would be: “The implementation of Model X in
Software Y is valid for application in forensic casework subject to limita-
tions described in the operational validation document”.

Model and software validation are inherently entangled, as software
implementation is always needed to implement and use a model (see
Fig. 1). However, the two concepts can be related in a simple way; the
software is merely a vector for the model. As illustrated in Fig. 1, validat-
ed software can actually rely on an invalid model, for example, if the un-
derlying theory or mathematics are shown to be flawed. The goal is to
implement a valid model, but it is important to realize that correct im-
plementation of the mathematics of a model by a piece of software pro-
vides no information about the validity of the model itself; conversely,
demonstration of correct implementation is a critical part of validation.

2.1, Model validation

Model validation ensures that the model has been extensively
checked to be sound and fit for purpose. This can be achieved through
two steps: conceptual validation and operational validation [11].

2.1.1. Conceptual validation

Conceptual validation verifies that the mathematical formaliza-
tion of the model, as well as its underlying assumptions, is funda-
mentally correct. Publication of the theory of the model in peer-
reviewed scientific journals allows an opportunity for the underlying
theory to be independently assessed, articulates the underlying as-
sumptions, and, most importantly, documents the scientific support
for the model structure, For this step to be successful, the model the-
ory must be thoroughly explained. Publication, while necessary, is
not sufficient; an editorial decision to publish a paper does not con-
stitute fundamental proof of the scientific validity or usefulness of
the contents.

The advent of electronic publication removes space restrictions and
allows for the possibility of publishing online supplementary material,
and gives modellers the opportunity to expand on their methods. The
underlying data on which the conclusions are based can and should
be published as supplementary material so that independent

researchers can inspect it and use it to independently verify the results
obtained. For open-source software, the computer code can also be pub-
lished as supplementary material, or as a link provided to the location of
the code [12]. The code can then be studied by independent researchers,
facilitating an understanding of the model, an important component of
conceptual validation, The implementation of the model can also then
be independently assessed by interested parties.

The most straightforward way to demonstrate conceptual validity is
for the model developer to embrace a transparent approach, which al-
lows for true independent review and verification. A transparent ap-
proach requires all of the model assumptions to be described, and
accessible to anyone who wishes to independently re-implement the
model. This approach is demonstrated by [7,8]. This is diametrically op-
posed to a black-box approach in which only partial explanations are
provided, denying an independent researcher the ability to scrutinize
the details and re-implement the model if desired [3,13].

2.1.2. Operational validation

We follow [14] and define operational validation as the procedure
that determines whether “the model's output behavior has the accuracy
required for the model's intended purpose over the domain of the
model's intended applicability”. Operational validation is usually veri-
fied using a “computerized model”. In other words, unless a computer
implementation of the model is available that can run a profile and
yield an output, the operational validity of the model cannot be tested
(Fig. 1), Operational validity is tested via user-defined criteria that can
be either accepted or rejected. These can be determined for LR-based
models, For example, the following properties can readily be tested:

= Comparison to a standard basic model that operates with minimal as-
sumptions so that the effectiveness of models that take into account
additional parameters may be measured objectively. Gill and Haned
[15] defined the requirements for such model, which allows the
evaluation of complex DNA profiles without using all available
information.

* The LR of a set of propositions for any profile is lower or equal to the
inverse match probability of the profile questioned under the numer-
ator hypothesis [9].

* The LR obtained for a given profile decreases with increasing
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ambiguity and decreasing information content [9]. Specifically, any
deviation from a one-to-one correspondence of the suspected con-
tributor profile and the evidence profile, as well as any loss of informa-
tion from the evidence profile itself, should reduce the LR,

The LR can be compared to a benchmark LR value. A benchmark LR can
be calculated when most parameters of the model can be estimated
from known profiles (see below). The reasons for any differences be-
tween the observed and expected output can be investigated and the
model can subsequently be modified to yield the expected output.

2.1.3. Defining benchmarks for LR-based models

Benchmark likelihood ratios can be calculated for certain models
for which parameters can be estimated directly from samples with
known input. The LRs obtained with parameters estimated from
such samples, and the LRs calculated with the estimates for another
test dataset should converge [2]. The quality and range of the data
used for operational validation are critical [ 11,14], We follow Sargent
[14] and define data validity as “ensuring that the data necessary for
model building, model evaluation and testing, and conducting the
model experiments to solve the problem are adequate and correct”.
Typically, experimental data sets for which the true composition of
the samples is known are used (see for example [7,16]). Test samples
chosen should represent the spectrum of situations encountered in
real-world casework. Profiles representing extreme situations
should be included, even if these profiles ultimately might not be
interpreted in casework. The idea is to determine not only when
the system works as expected, but also when it may fail. Specifically,
itis important to investigate the boundaries of the model within its
domain of application. Common characteristics of forensic caseworl
samples that can increase their complexity include multiple contrib-
utors, low quantity (provoking possible drop-out) and low quality
(e.g., degradation, inhibition, contamination). All of these factors in-
crease ambiguity and reduce information content. Both the limita-
tion of the model and the limitations of the evidence must be
tested. For example, validation may determine that, past a certain
number of contributors, the information content of the profile is sim-
ply too limited to reliably distinguish a true contributor from a non-
contributor who shares some of the detected alleles by chance.
Therefore, based on an operational validation of the model, as imple-
mented by software, it might be relevant to impose a limitation on
attempting to interpret casework samples that exceed some defined
number of contributors to a mixture, Simulated data can prove help-
ful in exploring model limitations; however, they cannot substitute
for experimental data [13]. Any parameters modeled using simulat-
ed data must always be tested on profiles generated from physical
samples, and the model refined based on the outcome, The most ro-
bust models are those tested with the widest range of data [14]. This
is well illustrated by Nordstrom: “The greatest weaknesses of any
model computation are the quality of the input data and the adequa-
cy of the assumptions (implicit and explicit); remember GIGO ('gar-
bage in, garbage out’).”

2.2, Software validation

Model and software validation usually are carried out simultaneous-
ly, as it is the computerized version of the model that enables the model
validation exercise (Fig. 1). We define software validation as ensuring
that the programmed algorithms follow the mathematical concepts de-
fined in the model. We suggest the following main steps for software
validation:

1. Define the statistical specifications of the software: This is an outline
of the theory behind the model to be implemented in the computer-
ized version of the model. This document compiles the information
that is typically available in peer-reviewed papers describing the
model and software implementation.

2. Carry out analytical verification: For example, analytical calculations
of likelihood ratios using simple cases (e.g., single-source and two-
person mixtures) can be derived and compared to the software out-
put. Depending on the complexity of the model, analytical verifica-
tion may or may not be possible, This has been termed the
“complexity paradox” by [13]; the more complex a model is, the
more difficult it is to verify the different blocks of the model. In
such a case, the software output can be compared to output from al-
ternative software that implements a similar model.

3. Compare to parallel implementations: Comparisons to alternative
software, either relying on a similar or a different probabilistic
model, can be useful to verify software behavior, Such comparisons
rely on the ‘convergence principle’ described by Gill and Haned
[15], as well as Steele and Balding [ 1], Numerical differences between
software, corresponding to one unit on the logyg scale are negligible
[1].

4. Verification of the code itself through visual inspection and re-
coding. This is most easily achievable through open-source software,

3. Validation in practice

In Box 1 we illustrate an example of validation in practice using the
LRmix program, which is freely available in the Forensim R package
[17]. While the general approach to validation is applicable to all sys-
tems, the specifics will vary depending on the model and the variables
that are included. Validation of the model itself will concentrate on
the variables that add information content. Questions important to

Box 1
Validation steps for the LRmix program for use in forensic casework.

Step 1. Conceptual validation
* Model theory and assumptions were explained and justified
in a “statistical specifications” report,
¢ Model theory was formalized and published in peer-
reviewed journals [18,19].

Step 2. Operational validation

* Model output was compared to expert opinion on 20 cases,

* Model output was compared to the following programs: Lab
Retriever [20], LikeLTD [21], FST [16], GRAPE [22],

* Performance tests using 211 controlled mixtures (of one up
to five contributors) and 621 (overall-loci) likelihood ratios
were compared to expected trends based on gold standard
conditions where parameters were known.

Step 3. Software validation

* Software output was evaluated analytically, using the Xcas
algebra software

* Model output was evaluated on 77 controlled NGM mix-
tures, and > 1000 LRs were computed and compared to ex-
pected trends using known parameters

* LRmix output was evaluated against analytical formulae
derived for simple examples

* LRmix output was evaluated against an independent re-
implementation of the model (in the Java language), using
77 controlled NGM mixtures, and > 1000 LRs were comput-
ed and compared

Validation statement: “Over the 1095 LR calculations were sub-
mitted to comparisons of LRmix and other software, for all tested
samples, the same conclusions were obtained. We therefore con-
cluded that LRmix is validated for use in casework, within the lim-
itations described in the operational validation document.”
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this process include: how does changing the values for these variables
change the LR; at what point does it make a significant difference;
what is the effect of using extreme values; and when does the model/
software behave in an unexpected way? Box 1 outlines the different
steps carried out to validate LRmix for use in forensic casework. These
steps are given as an illustration on how the validation procedure
might be carried out in casework.

4. Discussion

Although no guidelines yet exist on the best methods to validate fo-
rensic DNA interpretation software for casework use, we can draw on
the collective wisdom of other disciplines to guide our inquiry. We
can also comment on published validation efforts of software tools
that have been offered for the interpretation of forensic DNA profiles.

4.1. Does the validation answer the relevant scientific guestion(s)?

The DNA Commission of the International Society for Forensic Ge-
netics recommendations [3] offers some suggestions for best practice,
including a transparent approach that readily allows for independent
verification. The Scientific Working Group in DNA Analysis Methods
(SWGDAM) has convened a probabilistic genotyping subcommittee
that produced a document of concrete guidelines in 2015 [23].

While software validation might appear to be straightforward,
model validation may lead to epistemological questions about the true
meaning of a validated model. Here, we argue that model validation is
possible, given a particular context of use, within a specific framework
of limitations, and for an explicit implementation. One of the limitations
to consider is the complexity of the model. The more complex the
model, the greater the number of assumptions that are required. In-
creasing the number of variables incorporated into such a model also in-
creases the chance of creating dependencies, Such models require a
validation protocol that specifically addresses the additional interac-
tions, and care must be taken to clearly define the variables. We caution
that complex models may at some point begin to produce unrealistic re-
sults, and hence become counter-productive. More generally, the vali-
dation criteria should be explicit to the end users, and a determination
made as to whether these criteria are fit for purpose. Within a coherent
quality framework, the criteria may be improved over time. As an exam-
ple, the steps used to validate LRmix are provided to users (Box 1).

4.2, Software and model comparisons

Comparison of the model to be validated to other models is an im-
portant part of validation. However, this can be difficult in practice
due to differences between the models themselves. Therefore,
attempting to set parameters to exactly the same values for each system
to perform a fair comparison is not always feasible, as different models
rely on different variables and parameters. Typically, imposing values,
or including variables, that optimize one system, especially at the ex-
pense of other variables important to another system, may produce a
misleading comparison.

Such comparisons require careful thought about which variables are
important to a model and which, for the sake of the most informative
comparison, must be implemented as specified by the model. As a gen-
eral guideline, external factors, such as the sample population, allele fre-
quencies and, of course, the specific hypotheses compared, can and
should be kept constant. However, variables that are used differently
between the models, such as analytical threshold, peak heights, drop-
out model, and even population sub-structure models, must be imple-
mented as originally intended by the architects of the model and
software,

4.3. What are the validation responsibilities of the software developer and
of the end user?

The extent and type of user validation depends on the credibility of
the model and the software implementing it, and this is closely related
to the available information (scientific papers, tutorials, websites, sem-
inars and workshops). Any program that uses laboratory-specific data
to calibrate input variables requires at least some work on the part of
the end-user. Internal validation can also be understood as an important
exercise that helps the end-user familiarize himself with the software.
Animportant aspect of this exercise is to identify and understand results
that may appear counter-intuitive based on previous experience of the
analyst. Assuming the model and software implementation are valid,
logical explanations for these results can be found in the details of the
calculations. Working through these examples can contribute greatly
to the understanding of the scientist [24].

4.4, Is validated software always valid?

Models and software are dynamic; they evolve and improve over
time [13]. For example, software validated for STR kits may not be
used for SNP markers without an entirely separate validation exercise.
This is particularly true for those models relying on empirical data, as
such models rely heavily on calibration for their deployment in case-
work. Casework implementation might also give rise to situations that
were not tested during the validation phase; these untested conditions
should be submitted to the appropriate validation tests, Similarly, as
software are developed or evolve, they can be tested and validated
against a repository of simulated and case examples specifically pre-
pared for such a purpose. This ensures that changes to the software
are tracked and thoroughly checlked.

4.5. The case for transparent software

Adopting a transparent approach is desirable when developing soft-
ware for use in forensic casework [3,13]. This could be achieved in sev-
eral ways. An informative discussion on the matter of validation is
provided by Nordstrom [13]. Although the author uses examples from
geochemistry, we believe the concepts and discussions are also relevant
to forensic science. We start with this statement: "Any computer code
that is used for regulatory or legal purposes must be transparent” [13],
Freely available, open-source software is a straightforward way to
achieve transparency in science, as results obtained with a given soft-
ware can be verified and reproduced independently [12]. Commercial
software can achieve sufficient transparency if the developers choose
to provide adequate information about the validation and the perfor-
mance of the models, It was previously suggested that open-source soft-
ware can be used as a vehicle to compare the performance of various
software, including commercial software [15].

Concerns about the reliability and reproducibility of software used in
scientific computing have grown over the last few years [ 12,25). There is
a strong movement for researchers to make the source code used for
analyses freely available to the community at the time of publication.
Easily accessible source code implementing a statistical method will
allow scientists to perform all aspects of software validation. Availability
of code will allow for operational validation as users can apply the
method to known samples. Furthermore, independent researchers can
visually examine the code to assess the specific implementation of the
model. Finally, such transparency will promote standardisation and
will facilitate improvements and extensions to existing software
which will be a further benefit to the community.

5. Concluding remarks

In 1984, McCarl [24] stated “There is not, and never will be, a totally
objective and accepted approach to model validation.” More than
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30 years after this statement was made, no generally-accepted method
to test the validity of models and algorithms exists, especially in the field
of probabilistic genotyping. We hope that the examples and definitions
given in this paper will assist both software developers, as well as the
end-users in the forensic community, to create and validate interpreta-
tion software. It is our hope that the availability of those tools will, in
turn, facilitate the introduction LR-based methods for the interpretation
of (complex) DNA profiles.
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With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law
enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two
or more contributors are increasingly being encountered, However, insufficient research has been
conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor
(KNC) in these complex samples, and under what specific conditions. In order to investigate this question,
sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing
2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of
contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs
and KNCs, This work was intended to illustrate the best-case scenario, in which all alleles from the TC
were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled
in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence
profile to TCs and IKNCs. This resulted in 140,000 LRs for each of the two scenarios, These complex mixture
simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than
1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and
associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes
one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of
replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures
with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater
than 1,000, Thus, overall, these results imply that the weight of evidence that can be derived from
complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to
explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to
layer the effects of additional factors, such as drop-out, peak height, and other variables.
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1. Introduction At least two factors may reduce the information content of
multi-contributor samples as compared with single source

As a consequence of both the increasing sensitivity of DNA samples, First, many of the possible alleles at a particular locus

typing methodologies, as well as mounting awareness by law
enforcement of the perceived capabilities of DNA typing, complex
mixtures consisting of DNA from two or more contributors are
increasingly being encountered in forensic DNA profiles (N. Rudin
and K. Inman, personal communication; [1-6]).
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may be present in the evidence sample, diminishing the ability to
exclude people as contributors to the mixture, Second, two or more
contributors to the mixture may share the same alleles, increasing
the difficulty of inferring the genotypes of the true contributors
(TCs) of the mixture directly from the evidentiary sample,
Together, these factors reduce the ability to distinguish TCs from
known non-contributors (KNCs) in complex mixtures. These
difficulties are exacerbated by forensic DNA evidence samples
compromised by various conditions, such as low quantity and poor
quality, that result in complex profiles exhibiting characteristics
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such as allelic drop-out, degradation, inhibition, pealks heights that
do not reliably reflect the original contribution to the sample, and
varying ratios of multiple contributors. In this worlk we focus on
separating out the effects of multiple contributors.

Historically, binary approaches, such as combined probability of
inclusion (CPlI), and restricted or modified random match
probability (RMP) have been used to estimate the evidential
strength of mixed samples in forensic DNA analysis [7-10]. More
recently, the likelihood ratio (LR) approach is gaining acceptance as
a tool to estimate the weight of complex profiles [2,3,5]. The LR
represents the ratio of probabilities of observing the alleles
detected in an evidence profile under two mutually exclusive
hypotheses, represented as the numerator (H;) and denominator
hypotheses (H;). LR values greater than 1 are interpreted as
indicating greater support for H; than H,, whereas a LR less than
1 indicates greater support for H, than Hy [11,12]. The standard
mathematical depiction of the LR is:

Pr(E|H;)
M i)
Calculation of a LR requires specification of the total number of
contributors, as well as the number of contributors meeting
various conditions for both H; and Ha.

For situations encountered in forensic DNA, three categories of
conditioned contributors are frequently encountered., The first
category is an individual whose DNA is assumed present, usually
because of the nature of the sample; this conditioned contributoris
often categorized as “assumed.” Contributors in this category are
assumed to be present and therefore are conditioned contributors
in both the numerator (H4) and denominator (Hz). The second
category is an individual for whom the weight of evidence is being
assessed; this conditioned contributor is often characterized as a
“suspected” or “hypothesized" contributor [13]. Contributors in
this category follow different conditions in Hy and Hy; typically this
contributor is conditioned in H; and replaced with an unknown
contributor in Hy. The third category is a contributor whose profile
is unknown (unprofiled); unknown individuals are invoked to
complete the total number of contributors.

Taking the simplest example, a single source sample, the
numerator hypothesis would typically pose that the evidence
derives from a single known individual (i.e, a profiled hypothesized
contributor), whereas the denominator hypothesis replaces this
known individual with an unknown (i.e. unprofiled) individual. In
contrast, the hypotheses for mixtures expand to consider varying
numbers of assumed, hypothesized and unknown contributors;
thus, multiple pairs of competing hypotheses might be considered
for a particular mixed sample. For example, under the assumption
of a two person mixture, H; could posit that the evidence sample
derives from one hypothesized and one assumed contributor,
while the H; hypothesis might be that the evidence is explained by
one unknown plus one assumed contributor. An alternative pair of
hypotheses for the same mixture could be that under H; the
mixture derives from one hypothesized contributor and one
unknown contributor, while under H, the mixture derives from
two unknown individuals.

Intuitively, we expect that a TC included in the numerator
hypothesis should result in a LR>1, indicating support for the
proposition that the TC actually contributed to the sample.
Conversely, we expect that a KNC assumed in the numerator
hypothesis should result in a LR <1, indicating support for the
proposition that an unknown contributor is the TC to the sample.
However, it has been shown that under certain scenarios these
simplistic expectations fail. The earliest mention of this possibility
surfaced when Evett [14] demonstrated that a two person mixture
could yield a LR<1 even when there existed confirmatory

information for H; the numerator proposition (which Evett
described as the ‘prosecution proposition’). Much later, Brenner
et al. [15] commented that altering the proposed number of
contributors will change the LR from LR>1 to LR <1 when the
hypothesized contributor carries the more common alleles in the
mixture. Shortly thereafter, Weir et al. [8]. using the historical
Polymarker® genetic typing kit on mixtures, showed that TCs may
generate LRs<1. Specifically, if all of the alleles at a particular locus
were detected in the evidence profile, and the hypothesis in the
numerator included at least one unknown contributor, the
resulting LR could be less than 1 if the hypothesized contributor
in the numerator carried common alleles at the locus, A small body
of work suggests that, especially for mixtures, some non-trivial
proportion of KNCs will generate LRs> 1 [16-19]. This is not only
unsurprising, but statistically predicted. For example, when Gill
et al. [16] proposed a method for measuring the robustness of an
LR, they illustrated that simulated KNC profiles could produce
LRs>1. However, they only tested its usefulness on a handful of
caseworl stains.

In spite of this earlier work, we are not aware of any published
research that assesses how often these effects would be expected
to occur in different types of mixtures, or to explore how different
genotypes for the hypothesized contributor, might affect the
results, In particular, the moderately variable loci typed in current
short tandem repeat (STR)-based systems potentially give rise to
the situations in which the LR for a TC included in the numerator
hypothesis falls below 1, as well as those in which a KNC produces a
LR > 1. Determining the frequency with which these effects occur,
and under which particular circumstances, would add greatly to
our understanding of the LRs produced for complex profiles.

As advances in technology began to allow laboratories to
analyze challenging samples, it became immediately and abun-
dantly clear that the community did not have the appropriate tools,
nor the supporting research, to reliably interpret and weight the
resulting complex profiles. Over the past few years, research on
using LRs to assist in interpreting these profiles has produced
publications on a number of issues, including the ability to
estimate the number of contributors [20-25] and the effect of mis-
specifying the number of contributors when computing LRs [24].
While Gill, et al. [16] proposed a method (implemented in LRMix
[26]) to calculate the probability of a misleading LR, they
incorporated the probability of both dropout and drop-in, but
did not isolate the parameters of allele frequencies or number of
contributors. We are not aware of any studies that systematically
address how varying only the number of contributors and
unknown contributors affects the ability to distinguish TCs from
KNCs in mixed samples. Published studies [17,27,28] attempt either
to separate the effects of multiple contributors from other
variables, such as low template, drop-out, drop-in or peak heights,
or focus on simpler hypotheses involving fewer contributors.

Unlike the LR, the CPI (aka random man not excluded, RMNE)
does not require specification of the number of contributors in the
sample. The lack of requirement to specify the number of
contributors, combined with the ease of calculation, and perceived
simplicity of explanation, has resulted in the widespread use and
acceptance of this calculation. However, the CPI has been strongly
criticized in the literature (reviewed in [1,7,29,30]) both because it
discards information, and also because, in certain situations, it can
be prejudicial to the hypothesized contributor for a variety of
reasons [1,2,4,29-32].

Here, we aim to explore the capabilities and limitations of
statistical approaches used to assess the strength of evidence
derived from complex DNA mixtures based solely on the number of
contributors (ranging from 2 to 5) and the frequency of alleles
found in commonly-used STR loci. Nominally, we assessed how
often and under what conditions TC generate LRs< 1 (termed



66 C.D. Marsden et al./Forensic Science International: Genetics 22 (2016) 64-72

sensitivity by SWGDAM [33]) and KNCs generate LRs greater than 1
(termed specificity by SWGDAM [33]), and also how well TCs can
be separated from KNCs in these mixtures by evaluating the
distributions of LR values derived from each of these conditions.
This latter metric is of critical practical importance, as it is the
discrimination power (i.e. the degree of overlap) rather than the
absolute LR values that inform us about the strength of evidence.
Additionally, we explored how the variables of number of
contributors and number of unknown contributors affect the
ability to discriminate TCs from KNCs. Because complete profiles
are not always recovered from forensic evidence samples, and
because historical profiles generated from previous genetic
analysis kits contain information at fewer loci, we also wanted
to know how LRs computed from less informative profiles behave.
To this end we performed our analyses on the loci found in the
Identifiler® kit, as well a subset of 9 loci found in the Profiler Plus®
kit. Finally, we wished to compare the behavior of two different
kinds of statistical approaches commonly used in mixture
analyses, the LR and the CPI, under the experimental scenarios
detailed above.

Our results provide a best-case analysis of the information
content of 2-5 person mixtures encountered in forensic DNA
casework as we simulated data in which each of the contributors to
a mixed sample was present in equal and sufficient amounts such
that no drop-out is expected. We acknowledge that this is not a
realistic casework scenario; most forensic evidence samples
containing multiple contributors also tend to be of poor quality
and low quantity, and the standard amount of DNA amplified using
forensic DNA typing systems is often insufficient to completely
represent multiple contributors. Nevertheless, it is not only useful,
but requisite, to investigate a simplified model system so as to
separate and understand the effects of different variables. Overall,
our findings can be used as a benchmark for future analyses of
more challenging samples involving other complex phenomena
such as allelic drop-out or peak height differences.

2. Methods
2.1. Genotype simulation

Individual genotypes were simulated by sampling two alleles
for each locus from a multinomial distribution with the parameters
2 and p, where p is the vector of allele frequencies for a specific
locus. Essentially this process assumes Hardy-Weinberg equilibri-
um for each locus and linkage equilibrium across loci. For the

Table 1
Details of hypotheses investigated when calculating LRs for different mixtures.

15-locus simulations, we considered the loci included in the
Identifiler® kit. For 9-locus simulations we considered the subset
ofloci included in the Profiler Plus® kit, Allele frequency data from
the Caucasian population, generated by the National Institutes of
Standards and Technology (NIST) were used in all simulations [34].

2.1.1. Generation of mixtures

For each simulation replicate set, we first simulated six
individual genotypes (C1, C2, C3, C4, C5, KNC). The first five
individuals (denoted by “C") were next used as TCs to create the
evidence mixtures and are hereafter referred to as C1, C2, C3,
C4 and C5 (Table 1). Each set contained four mixtures [(C1,C2); (C1,
C2,C3); (€1,€2,C3,C4); and (C1,2,C3,C4,C5)] The sixth individual
(KNC) in the set was simulated to represent a KNC (discussed
below), and this genotype was never included in the mixtures. All
mixtures were created assuming no drop-out (i.e. all of the alleles
of the TC to the mixture were detected in the evidence profile),

2.1.2. Calculation of LRs

For each simulated mixture, we calculated LRs under two
scenarios: one in which the hypothesized contributor (ie. a
contributor in the numerator) was the TC and one in which the
hypothesized contributor was a KNC. In order to calculate the LR,
the number of unknown and assumed contributors in the
numerator (H;) and denominator (H,) hypotheses must be
specified. However, for complex mixtures, many combinations
of unknown and assumed contributors are possible. For example,
fora two person mixture, H; could posit a mixture of DNA from one
hypothesized contributor and one assumed contributor (e.g. the
suspect and victim), and H; could specify one assumed contributor
and one unknown contributor (e.g. the victim and an unknown
individual). Alternatively H; could posit one hypothesized and one
unknown contributor (e.g. suspect and one unknown contributor),
and H; could specify two unknown contributors. In order to assess
LRs derived from hypotheses with varying number of unknown
contributors, we calculated LRs under 14 different hypotheses
representing all possible combinations of conditioned contributors
for each mixture (Table 1). For scenario 1, the C1 simulated for each
replicate was always the hypothesized contributor in H; and thus
never used in the denominator hypothesis. For scenario 2, in which
a KNC is compared to the evidence profile instead of a TC, the
simulated KNC was used as the hypothesized contributor in place
of C1. We produced 10,000 replicate sets for each number of
contributors (2-5) and set of hypotheses (see Table 1). This
resulted in 140,000 LRs computed using a TC in the numerator, and

Hypothesis® Total # of contributors to the mixture Contributors conditioned under H1" Contributors conditioned under H2
h21 2 c1,C2 C2+1 UNK

h22 2 1 2 UNK

h31 3 1, C2, C3 €2, C3+1 UNK

h32 3 C1, C2 C2+2 UNK

h33 3 C1+2 UNK 3 UNK

h41 4 C1, C2, €3, c4 €2, C3, C4+1 UNK
h42 4 T1, €2, C3+1 UNK €2,C3+2 UNK

h43 4 C1, C2+2 UNK C2+3 UNK

hd4 4 CI+3 UNK 4 UNK

h51 5 C1,C2,03,04,C5 €2, €3, C4, C5+1 UNK
hs2 5 C1,C2, €3, C4+1 UNK €2, C3, C4+2 UNK
h53 5 C1,C2, C3+2 UNK €2, C3+3 UNK

h54 5 €1, C2+3 UNK C2+4 UNK

hss 5 C1+4 UNK 5 UNK

? Hypotheses were named as follows: h[number of contributors in the mixture] [number of unknown contributors in H2), In other words, h21 means [2 contributors to the

mixture] [1unknown contributor in H2].

" C1 represents the hypothesized contributor, i.e. the conditioned contributor for whom the weight of evidence is being assessed. In order to calculate LR for a known non-

contributor, C1 was replaced with KNC. UNK = an unknown contributor,



C.D. Marsden et al./ Forensic Science International: Genetics 22 (2016) 64-72

another 140,000 LRs using a KNC in the numerator, for a total of
280,000 LRs,

LR calculations for all hypotheses were conducted using
DNAMIX v1.0 (http://genomine.org/dnamix/index.html), DNAmix
input parameters were provided via a text file which was generated
from the simulated genotype and mixture data with a custom
python script, Similarly, the DNAmix output files were parsed with
custom python scripts. For the KNC analysis, when the hypothe-
sized (KNC) contributor carried alleles absent from the mixture at
one or more loci, the LR was set to 0, because in such a situation, if
drop-out is not possible, then the hypothesized contributor cannot
be considered as a possible contributor.

2.1.3. Calculation of CPI

There exists both a need and natural curiosity to compare LRs
with historical methods despite the differences in assumptions,
variables considered, input data and fundamental approach of
these two types of methods. To this end, a CPI was calculated for
each mixture using the traditional formula, i.e., the square of the
sum of the allele frequencies. The CPI specifies neither the number
of individuals in the mixture nor the number of assumed and
unknown individuals. Therefore, we calculated only one CPI for
each mixture profile. Further, in order to perform a relevant
comparison between the LRs computed above and the CPls
computed for the same mixture profiles, the CP] was inverted to 1/
CPI to enable that comparison,

3. Results

Using simulations without allelic drop-out, we evaluated the
strength of evidence that can be derived from complex mixtures of
between 2 and 5 contributors, varying the numbers of unknown
individuals in the proposed hypotheses (Table 1) and using either
complete 15-locus or less informative 9-locus profiles.

3.1. Do true contributors (TCs) always yield LRs greater than 17
A natural expectation for LRs which specify a TC in H; is that
they will produce a result greater than one. For a complete 15-locus

profile, we found that TCs resulted in LRs greater than one in

Table 2
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99.99% of replicates. However, in 7/140,000 simulations the TCs
generated LRs less than 1 (Table 2). All 7 instances resulted from a
5-contributor mixture with at least one unknown contributor in
Hi. Interestingly, the 7 instances were associated with just four
replicates in the simulation (333, 855, 334[2x] and 6105[3x]), i.e.,
specific sets of simulated individual genotypes and the associated
complex mixture (see Supplementary Table 1). Examination of the
two replicates (6105 and 334) that produced LRs < 1 in multiple
comparisons indicates that certain allelic combinations at a locus
may predispose a profile to produce a LR less than 1 for a TC,

Specifically, for replicate 6105, the same seven loci (D16, D18,
D21, D5, D7, FGA, vWA) produced LRs less than one for five person
mixture hypotheses with 2, 3 and 4 unknown contributors (h52,
h53, h54 see Table 1). For replicate 334, seven loci gave LRs <1
(CSF, D19, D21, D5, FGA, D16 and D3), the first five of which were
common to five person mixture hypotheses with 3 and 4 unknown
contributors (h53, h54, see Table 1),

Still considering TCs in H; we further investigated how
frequently the LR fell below 1 at individual loci. Our results show
that for hypotheses including one or more unknown contributors

Table 3

Proportion of replicates generating LR <1 for TC at 1, 2,3,4 and 5 or more loci by
hypothesis based on a complicate 15 locus profile (see Table 1 for hypothesis
notation).

TC has LR<1 at

Hypothesis 1+ loci 2+ laci 3+ loci 4+ loci 5+ loci
h2t 0 0 0 0 0
h22 44,15 10.12 149 0.17 0.04
h31 0 Q0 0 0 ]
h32 77.22 40.95 15.64 4.01 0.73
h33 73.74 36.97 12.41 2,98 0.52
h41 0 0 0 0 0
h42 89.18 63.29 34.84 13.83 3.87
h43 89.65 62.55 33.04 1315 4.05
hd4 86,22 55.94 26.9 9.88 25
h51 0 0 0 0 0
h52 93.56 72.32 44.74 21.52 8.27
h53 95.65 79.28 52.93 28.31 11.39
h54 94.78 76.66 49.63 249 9.89
h55 93.44 72.73 43,83 21,09 74

LR and 1/CPI values derived for different mixtures and hypotheses (see Table 1 for notation) for TC and KNC with a partial 15 locus profile,

Percentage of replicates where TC LR

Percentage of replicates where KNC LR

>1 >1000 >1 million >1 >1000
LR
h21 100 100.00 100.00 0 0
h22 100 100.00 99.80 0 0
h31 100 100.00 99.98 0 0
h32 100 99.95 87.72 0 0
h33 100 99.80 63.96 0 0
h41 100 100.00 97.75 0 0
h42 100 98.23 54,36 0.01 0
h43 100 96.01 29.43 0.02 0
h44 100 93.47 15.97 0.02 ]
h51 100 99.91 79.31 0 0
h52 99,99 90.69 28.03 0.09 0.01
h53 99.97 82.81 12.38 0.19 0.02
h54 99,97 75.38 6.00 0.21 0.01
h55 100 68.54 3.47 0.21 0.01
Total 99,99 93.20 55.58 0.05 0.004
1/CP1
2 person 100 100,00 95,17 0 0
3 person 100 99.99 13.80 0 0
4 person 100 91,10 0.02 0 0,02
5 person 100 31.78 0.00 0.21 0
Total 100 23.06 8.07 0.015 0.001
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in the numerator, 44% to 96% of simulations exhibited LRs < 1 at
one or more loci (Table 3). Moreover, in mixtures with 5 contrib-
utors and one or more unknowns in the numerator (H;; Table 3),
7-11% of simulations produced LRs less than one at 5 or more loci.
Interestingly, although hypotheses with zero unknowns in H,
never generated LRs less than 1, we found no evidence that
increasing the number of unknowns increased the proportion of
LRs less than one (Table 3). For example, in a 4-person mixture in
which one, two or three unknowns were specified in H;, the
proportion of replicates in which one or more loci gave a LR less
than one ranged from 86-89%. Conversely, the total number of
contributors in the mixture greatly influences the proportion of
TCs yielding LRs < 1 (Table 3).

3.2. Do known non-contributors (KNCs) always yield LRs less than 1?

A natural expectation for LRs which specify a KNC in H; is that
they will produce a result less than one. Ideally, a discriminating
typing system that performs well should yield LRs less than 1 for
KNCs because such individuals are not actually present in the
mixture. However, given the moderate heterozygosity of the STR
loci, the varying number of alleles at each locus, and the
distribution of allele frequencies, we expect some KNCs to yield
LRs> 1 due to coincidental sharing of alleles. To quantify this effect,
we determined the proportion of LRs in which a KNC posited in Hy
resulted in a LR greater than one. Indeed, in a small proportion of
simulations (0.05%, 75/140,000, Table 2) the KNCs yielded LRs
greater than one. In each of these instances, the result was
associated with mixtures of 4 or 5 contributors, and in which one
or more unknown was specified in Hy (Table 2). In many instances,
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the LRs greater than one were only slightly larger than one. LRs
greater than 1,000 were found in only 0.004% of comparisons (4/
140,000 simulations; Table 2).

3.3. Comparison of the distributions of LRs between TCs and KNCs

To evaluate how well the LRs in this study can distinguish
between TCs and KNCs, and to determine the effect of number of
contributors and number of unknowns (Table 1), we plotted the
distribution of LRs. Our comparisons are similar to the previously
proposed Tippett plots [11,16,35,36]. For the mixtures and
hypotheses considered in this study, TCs and KNCs produced
largely distinct LR distributions (Fig. 1). This separation indicates
that, even for 5 contributor samples for which mixture proportions
are ignored and for which no drop-out is required to explain the
hypothesized contributor(s), LRs produce reliable separation of TCs
and KNCs. The distributions are most distinct for hypotheses in
which 0 unknowns are posited for Hy. The distributions become
wider and move closer to one as the number of contributors
increases, and also as the number of unknowns increases.
Interestingly, the dominant predictive variable appears to be the
number of unknown contributors while the total number of
contributors exhibits a lesser effect on the ability to separate TCs
and KNCs,

3.4. Comparison to 9-locus profiles
The data presented so far are based on the loci included in a

15-locus profile. However, compromised samples often produce
partial profiles, and of course historical profiles generated using,
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Fig. 1. Distribution of LRs for simulated mixtures. TC denotes true contributor (red) while KNC denotes a known non-contributor (blue), Rows denote the total number of
contributors in the mixture while columns denote the number of unknowns in the numerator, The denominator always contains one addition unknown contributor. Overall,
note the good separation of LRs between TCs and KNCs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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for example, the Profiler Plus kit® comprise fewer loci. Therefore
we also assessed LRs based on the 9 loci included in the Profiler
Plus® kit. As expected, the 9-locus profiles generally produced
smaller LRs for TCs, and larger LRs for KNCs (see Supplementary
Table 2). Compared to the 15-locus profiles (Table 2), the
proportion of simulation replicates for which TCs produced LRs
greater than 1000 was notably smaller (71.72%) than for the 15-
locus profiles (93.2%). Similarly, a smaller proportion of simula-
tion replicates produced LRs greater than one million for TCs
(25.40%) as compared to the 15-locus profiles (55.58%;
Tables 2 and 3). Moreover, TCs producing LRs <1 were an order
of magnitude more common for the 9-locus profiles (64/140,000)
than for the 15-locus profiles (7/140,000; Table 3), Finally, the 9-
locus profiles in which H; specified a KNC produced LRs>1 an
order of magnitude more frequently (751/140,000; 0.54%) than
did the 15-locus profiles (75/140,000 simulations; 0.05%). These
results unsurprisingly indicate that profiles comprising fewer loci
contain less information with which to distinguish TCs from
IKNCs. This pattern is reflected in the slightly greater overlap in the
distributions of TCs and KNCs; however the separation was still
relatively pronounced (Fig. 2).

3.5. LR vs. CPI

We next compared the LR statistics generated for each mixture
profile with the CPI statistic. To enable a relevant comparison, we
inverted the CPI to 1/CPL It is mathematically impossible for 1/CPI
values to fall below 1, therefore unlike the LR values, 1/CPI values
were always greater than or equal to 1 (Table 2).
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For TCs, LR values were generally larger than 1/CPI values
(Table 2). This result is expected as, due to incomplete use of
available data [7] and specifically when allelic drop-out is not
required to explain the hypothesized contributor, the CPI typically
underestimates the weight of the evidence. It is noteworthy that
the difference between LR values and 1/CPI values was very small
for 2 person mixtures, but considerably larger for 3,4 and 5 person
mixtures; this difference was exacerbated for hypotheses with
fewer unknowns in H;. For example, for 3 person mixtures, only
13% of 1/CPI values for TCs were greater than 1 million, in contrast
to LR values, where 64-99% exceeded 1 million (Table 2),

For KNCs, 1/CPI values greater than 1 were found in a small
number of replicates for 4 and 5 person mixtures. However, the
magnitude of values that exceeded 1 was greater for 1/CPI than for
LR values. In other words, when CPIs mis-identified a KNC as a
contributor, the strength, hence inferred confidence, in the
incorrect inference was greater.

4. Discussion

Complex mixtures are increasingly being encountered in
forensic caseworlk and therefore a need exists for robust statistical
methods to accurately weigh the profiles generated from these
samples. However, the presence of genotypes from multiple
contributors may decrease the information content of complex
mixtures. This results from the fact that, in samples derived from
multiple contributors, a larger proportion of alleles in the
population at a locus will be represented in a sample, thus
reducing the power to exclude KNCs. Moreover, allele sharing
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contributor. Overall, the separation of LRs between TCs and KNCs is not as good as with 15 laci. (For interpretation of the references to color in this figure legend, the reader is
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between contributors makes it difficult to directly infer the
genotypes of TC. The conditions under which it is possible to
reliably distinguish TCs from KNCs (specificity) in samples with
multiple contributors have not yet been fully characterized. In
order to assess this in a controlled fashion, sets of Caucasian
genotype profiles were simulated and used to create mixtures
containing 2-5 contributors. All alleles from the contributor
profiles were represented and no peak height information was
used in computing LRs.

The distributions of LRs generated from TCs and KNCs for 15-
locus profiles show good separation in complex mixtures, even in
5-person mixtures for which considerable allele sharing exists
amongst the contributors (Fig. 1). Notably, the vast majority of TCs
and KNCs are correctly inferred, even in multiple contributor
profiles for which multiple unknowns are specified in the
numerator hypothesis. Nevertheless, it is important to note that
separation of TCs and KNCs is inversely proportional to both the
number of contributors and the number of unknowns in the
numerator hypotheses, indicating a decline in information content.
While good separation of TCs and KNCs is achieved under the
scenario in which full profiles of all contributors are represented, it
is important to understand that this defines a best-case scenario.
One type of information loss was simulated by reducing the
number of loci to 9. Although TCs and KNCs still appeared relatively
distinct, overlap increased due to the reduction in LR values for TCs
and the increase in LR values for KNCs.

Therefore, for LRs for complex mixtures containing sufficient
template to minimize the risk of drop-out, our present study fulfills
the requirements of SWGDAM to study sensitivity and specificity
[33]. However, further refinement of these recommendations is
needed. In particular, the two guidelines that suggest determining
“sensitivity” and “specificity” are as follows:

3.2.1.1. Sensitivity studies should demonstrate the potential for
Type 1 errors (i.e., incorrect rejection of a true hypothesis), in
which, for example, a contributor fails to yield a LR greater than 1
and thus his/her presence in the mixture is not supported.”

3.2.2.1. Specificity studies should demonstrate the potential for
Type Il errors (i.e., failure to reject a false hypothesis), in which, for
example, a non- contributor yields a LR greater than 1 and thus his/
her presence in the mixture is supported.

Unfortunately, these definitions are at odds with the definitions
of Type I and Type Il errors in classical statistics [37]. Specifically, a
Type I error is defined as a false positive, i.e. the sample is truly
negative, but falsely identified as positive. This translates as a LR for
a known non-contributor that incorrectly falls above one.
Specificity, as typically defined in statistics, quantifies the ability
of a test to avoid false positives. Type II error, on the other hand, is
defined as a false negative, i.e. the sample is truly positive, but
falsely identified as negative. This translates as a LR for a true
contributor that incorrectly falls below 1. Again, as typically
defined in statistics, sensitivity quantifies the ability to avoid false
negatives. Thus the SWGDAM guidelines, as written would appear
to have, at the very least, switched the nominal association of Type
I and Type II errors; Type I errors should be associated with
specificity, i.e. a known non-contributor that fails to yield an
LR <1; Type II errors should be associated with sensitivity, i.e. a
true contributor that fails to yield an LR > 1. Additionally, specificity
and sensitivity are, by definition, statistical measures of the
performance of a binary classification test (e.g., disease present or
absent). Using these types of statistical measures to quantify the
performance of LRs, which, by definition, quantify the strength of
the evidence for a particular proposition along a continuum of
values, would seem overly simplistic at best, The reason for this is
that any attempt to define a type I error is inextricably linked to the
size of the observed LR. If the observed LR is close to one, many
KNCs would be predicted to have a similar or larger LRs. This

statistical uncertainty is not a problem because it is reflected in the
LR itself. It may also be beneficial to examine the proportion of
KNCs showing LRs greater than the observed value for the
hypothesized contributor [26,38] rather than assigning an overall
system-wide false-positive error rate. Nevertheless, in an attempt
to categorize this work as per the SWGDAM guidelines as written,
the simulations with TCs address guideline 3.2.1.1, quantifying the
ability to measure false negatives, and the simulations with KNCs
address guideline 3.2.2.1, quantifying the ability to measure false
positives.

Previous studies have shown that complex mixtures can yield
false negatives (LRs < 1 for TCs) and false positive (LRs>1 for KNCs)
results for complex mixtures, Previous work [8,14,15] showed that
for systems comprising just a few specific loci, a TC may generate a
LR < 1. However it was not clear whether the few low variability
loci used were responsible for this phenomenon, or whether it
would hold for an entire 15- or 9-locus profile of moderately
variable loci. Here we show that TCs in fact do generate LRs less
than 1 when using moderately polymorphic 15-locus STR profiles.
However, this occurred only in a small number of cases (7/
14,000 simulations) thus giving a misleading LR in just 0.05% of the
mixtures. Indeed, the rarity of this result highlights the value of
simulations, which permit very large number of replicates to be
generated and thereby enabling the detection of rare events. These
rare events were only associated with profiles of 5 contributors,
and in which the numerator hypothesis included at least one
unknown contributor (Table 2). Given that LRs <1 for TCs occur
more often with increasing numbers of unknown contributors in
the mixture, combined with the discussion in Weir et al. [8]. we
suggest that this effect may occur when the hypothesized
contributor in the numerator accounts for the common alleles
in the evidence profile. The remaining rarer alleles must then be
explained by unknown contributors. However, in the denominator,
an extra unknown contributor can be invoked to account for all of
the alleles in the evidence. Because the extra unknown contributor
can increase the probability of sampling the rarer alleles, the
profile can produce a higher probability under the denominator
hypothesis than under the numerator hypothesis, yielding an
LR< 1.

While a composite 15-locus profile rarely generated a LR less
than 1, we found that individual loci frequently generated LRs less
than 1 for TCs (Table 3). This is an important practical
consideration for forensic casework as it suggests that hypothe-
sized contributors should not be excluded based solely on a LR less
than 1 at a single locus. Rather, the LR for the entire profile should
be used to inform decisions regarding whether an individual may
be a contributor to a sample.

Previous work showed that KNCs generate LRs greater than 1 in
a small percentage of samples [17-19]. Our work confirms this
finding, showing that KNCs rarely generate misleading LRs, only at
a rate of about 0.5%. In forensic casework, samples comprising
multiple contributors frequently are additionally compromised by
differential contributions and allelic drop-out. Thus, the informa-
tion content will decrease further, and separation is expected to
decline. For example, Mitchell et al. [17] examined low-template
samples in which allelic drop-out was required to explain potential
contributors. In contrast to our current results, this group observed
LRs greater than 1 for KNCs even in 2 and 3 person mixtures (4 and
5 person mixtures were not assessed) and even assuming no
unknowns in the numerator hypothesis.

The LR framework used in the current work does not model any
factor that might complicate a DNA profile, such as drop-out, drop-
in, degradation, inhibition, or contributor proportions. Thus, any
KNC containing alleles absent from the mixture profile was
automatically given a LR of 0. However, if drop-out were to be
considered, these same individuals could potentially generate
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LRs > 1, This highlights the ability to correctly support the exclusion
of hypothesized contributors carrying discrepant alleles from
high-level multi-contributor profiles in which drop-out is not
expected. In low-level profiles, or for low-level contributors, the
possibility of drop-out further compromises the ability to
distinguish TCs from KNCs. In future work we will add allelic
drop-out to further investigate the limits of separating TCs and
KNCs in multiple contributor profiles in which the information
content is further reduced due to missing information.

Another caveat to our study is that we did not incorporate peak
height information in our calculations. If modeled correctly, peak
heights could provide extra information by deconvelving the
mixture [17,28,39,40] and in this regard would only improve the
results presented here. For a profile with a discrepant ratio of
contributors, when LRs calculated using an approach that models
pealk height are compared to LRs in which peak height information
is completely ignored, higher LRs are, unsurprisingly, produced for
TCs [27,28]. Peak height information can be incorporated in two
ways: manually, prior to calculating an LR, and automatically
modeled within the LR calculation. Various software tools offer a
variety of different approaches to consider peak height informa-
tion in an LR calculation [27,28,41]. While not a realistic casework
scenario, our finding that, in a 5-person mixture profile in which
complete information for all contributors is represented, the
majority of simulations yield LRs greater than 1000 for TCs is
telling. This result suggests that, for certain categories of profiles, a
simple LR that does not model peak heights at all may be sufficient
to provide convincing support for the presence of a TC.
Additionally, if the person of interest is a minor contributor to a
5-person mixture, the stochastic effects of low template may tend
to negate the benefits of incorporating allele peak heights. This
information can assist laboratories in making important policy
decisions. First, depending on the statistical tools available to a
laboratory, they can define a complexity threshold above which
they will decline to interpret a profile. Second, understanding
which kinds of profiles truly benefit from a more complex
treatment, and determining how often those profiles are encoun-
tered, is an important factor for laboratories to consider when
weighing the cost of a more complex interpretational system as
compared with simpler methods.

Historically, statistics such as the CPI have commonly been used
to provide weight to mixture profiles. These types of statistics were
easy to understand and calculate, and do not require the
practitioner to specify the number of contributors. It has been
argued that the CPl is easier to explain in court than LR approaches
[9,10]. However, the literature overwhelmingly favors an LR
approach, both because it has the ability to incorporate much
more information, including peak heights, and also because it can
model more complex variables such as drop-out and drop-in.
Additionally, LRs address the question specifically relevant to the
trier of fact by conditioning on the hypothesized contributor [7].
We compared the general performance of LRs and CPls on the same
profiles. We found that LRs and CPIs performed similarly on two
person mixtures. However, for mixtures comprising 3 to 5 con-
tributors, LRs generated larger values than CPlIs for TCs (Table 2),
particularly for hypotheses with fewer unknown contributors. This
highlights the ability of LRs to use more information in the profile
to provide stronger evidence in support of a TC. These data are
consistent with previous studies [19,27,28] which suggest that the
greater amount of information used by LRs provides a more
accurate weight of evidence than CPIs, supporting the preferred
use of LRs in mixture interpretation. Also consistent with previous
work [7,24] is our finding that CPIs, which can never refute an
inference of contribution by a specific donor, can more strongly
support an incorrect inference of contribution than the

comparable LR. In other words, CPls have the potential to mislead
more strongly, if not more often, than LRs.

5. Conclusion

Overall, these results imply that the weight of evidence that can
be derived from complex mixtures containing up to 5 contributors,
under a scenario in which no drop-out is required to explain any of
the contributors, is remarkably high. This a useful benchmark
result onto which future studies can layer the effects of additional
variables, such as drop-out, contributor ratios, shared alleles, and
other variables.
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PCAST Co-Chair Eric Lander,

Collaborative Testing Services, Inc, (CTS) is an independent proficiency test provider with 40 years of
experience supplying discipline appropriate samples to forensic laboratories worldwide. The recent
request by the President’s Council of Advisors on Science and Technology (PCAST) to provide
information to assist in the establishment of foundational validity and estimation of accuracy was
reviewed by our company and technical staff, and we believe our reports offer substantial
information that can advance your endeavors.

From the supplied list of forensic feature comparison methods, CTS has extensive historical
information regarding two of these disciplines. We have been producing Firearms Analysis tests
since 1978 and Footwear Analysis tests since 1985. We respectfully submit CTS Summary Reports for
these disciplines as follows:

Firearms Analysis:

e 3lreports from 2001 through 2016, which represents two tests per year, with only one
from 2016 as our final test of the year has not yet been published.

e These reports contain information from a yearly average of 450 examiners from 175
laboratories in 30 countries.

Footwear Analysis (CTS Imprint/Impression Test):

* 16 reports from 2001 through 2016, which represents one test per year.

* These reports contain information from an average of 250 examiners from 150 laboratories

in 20 countries.

Within the PCAST report “Forensic Science in the Criminal Courts: Ensuring Scientific Validity of
Feature-Comparison Methods.”, the authors stressed the use of Black Box studies as a key tool in
establishing foundational validity and estimating the accuracy of these methods. CTS tests are very
similar to Black Box studies in that the examiners do not know the expected answer, they all receive
the same input (samples) and their output (results) are compared to the results of the other
participants. While CTS focuses on consensus results when highlighting inconsistencies, the ground
truth of the supplied samples is known and presented at the beginning of the report within our
Manufacturer’s Information statement.

CTS believes that these reports support the foundational validity of these practices. Within both
disciplines, an average consensus of > 95% of participants match the ground truth in 46 of 47
reports. It is important to note that CTS tests do not require examiners to evaluate the samples for
value prior to making comparison decisions as in other studies, and examiners are limited to the
choices: “yes”, “no”, “inconclusive” for their comparison decisions. These are just a few of the
factors that should be considered before utilizing our data sets as an accuracy estimation for a

method.



We would be happy to answer any questions concerning CTS Reports.
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Catherine Brown
Vice President, Operations
Collaborative Testing Services, Inc.

www.collaborativetesting.com
www,ctsforensics.com
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From: John Buckleton F
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Subject: ]ts fi i
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Eric, attached are the results from Duncan Taylor for the 5p testing. Please feel free to
distribute within PCAST. John

The information contained in this message and/or attachments from ESR is intended solely for
the addressee and may contain confidential and/or privileged material. If you are not the
intended recipient, any review, disclosure, copying, distribution or any action taken or omitted
to be taken in reliance on it is prohibited by ESR. If you have received this message in error,
please notify the sender immediately.
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From: Grant, Pat

To! EN-OSTP-PCAST
Subject: hair paper
Date: Wednesday, December 14, 2016 4:46:22 PM

This email is in response to the request in an AAFS news alert. | presume the following paper was
not considered by the PCAST report (altho don’t know for sure). It's likely completely ignorable for
that objective, but you can make the decision. It was refereed and published in the classified
literature, and was well outside the mainstream of forensic hair analysis. The technique does work,
however, and the classification was only OUO:

“Forensic Analysis of Hair for Inorganic and Actinide Signature Species Indicative of
Nuclear Proliferation”

Journal of Intelligence Community Research & Development, Intelink, 10 pp, 2009.

P.M. Grant, A.M. Volpe, and K.J. Moody

Pat Grant

Forensic Science Center
LLNL, L-091
Livermore, CA 94550
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Footwear evidence has tremendous forensic value; it can focus a criminal investigation, link suspects to
scenes, help reconstruct a series of events, or otherwise provide information vital to the successful
resolution of a case, When considering the specific utility of a linkage, the strength of the connection
between source footwear and an impression left at the scene of a crime varies with the known rarity of
the shoeprint itself, which is a function of the class characteristics, as well as the complexity, clarity, and
quality of randomly acquired characteristics (RACs) available for analysis. To help elucidate the

'F{zi‘[”“‘::f_" discrimination potential of fot?tvyear as a source of forensic evidence, the aim of this re.search is to further
Shoeprints characterize the chance association in position, shape, and geometry of RACs on a semi-random selection
Randomly acquired characteristics of footwear, To accomplish this goal in an efficient manner, a partially automated image processing chain
Accidentals was required, including steps for automated feature characterization, This technical note details the

Fourier descriptors methods, procedures, and type of results available for subsequent statistical analysis after processing a

Feature vectors

collection of more than 1000 shoes and 57,426 randomly acquired characteristics.

© 2016 Elsevier Ireland Ltd, All rights reserved.

1. Introduction

Although footwear impression evidence can provide a wealth of
information about a crime, including potential suspects, the total
number of possible offenders, and the most probable series of
events associated with a reconstruction, this evidence is often
undervalued (or even overlooked) due to limited knowledge about
how to collect, analyze, and interpret footwear impressions
[1]. Part of the reason for this disconnect may be the difficulty
associated with collecting sufficient-sized and community-shared
databases for extensive research and study, which would allow the
legal and forensic community to fully appreciate the value of this
type of evidence. The fact is, footwear research is extremely time-
consuming and labor intensive, regardless of whether the analyst is
interested in characterizing class, randomly acquired character-
istics (RACs), or both. Although class features hold incredible value,
this project deliberately disregards class characteristics and

* Corresponding author. Tel.: +1 304 293 9233,
E-mail address: Jacqueline.Speir@mail.wvu.edu (].A. Speir),
! Current address: Kansas City Missouri Police Crime Laboratory, 2645 Brooklyn
Avenue, Kansas City, MO 64127, United States.

http://dx.doi.org/10.1016/j.forsciint.2016.06.012
0379-0738/@ 2016 Elsevier Ireland Ltd. All rights reserved,

instead focuses on RACs or accidental features such as nicks,
tears, holes, and cuts that typically develop on outsoles as a
function of wear. The reason for this narrow focus in scope is
primarily four-fold. First, class features have received some
research attention in the past [2-11] and this trend is likely to
continue in the future. As a result, this investigative effort
intentionally sought out the less-traveled parallel track concerning
characterization of accidental features, while simultaneously
collecting sufficient data to allow for subsequent class analysis
downstream. This motivation was largely driven by the fact that
the majority of existing RAC databases are limited in terms of
statistical size, and typically restricted to less than 50-100 shoes
[12-17], save two exceptions known to the authors with sample
sizes larger than 500-800 paired impressions [18-20]. As such, this
research will help alleviate the scarcity of statistical information
concerning accidental features by contributing information on
more than 1000 impressions and 57,426 randomly acquired
characteristics. Second, the National Academy of Sciences’ (NAS)
2009 report on Strengthening Forensic Science in the United States
encouraged studies to shed light on the variability of randomly
acquired characteristics, including relative frequency of features,
and the appropriate use of statistical standards [21]. Third, the
Scientific Working Group for Shoeprint and Tire Tread Evidence

Downloaded from ClinicalKey.com at Library Charles C Wise Jr August 11, 2016.
For personal use enly. No other uses without permission. Copyright ©2016, Elsevier Inc. All rights reserved.
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(SWGTREAD) requested focused research in the area of “Random
Placement Shape and/or Placement of Randomly Acquired Character-
istics” [22], and finally, SWGTREAD also requested intensified
research in the area of “Mathematical Probabilities of Randomly
Acquired Characteristics” |23]. Given these challenges, the first goal
(and bottleneck) of this project was data acquisition. The
remainder of this technical note describes the manner in which
more than 1000 worn shoes (obtained from a variety of sources
including personal donations, corporate donations, and purchases
from local thrift stores) were sequentially processed via a
combination of automated and user-fed algorithms allowing for
identified RACs to be extracted and characterized in terms of shape,
geometry, and physical location.

2. Material and methods

Available defining characteristics associated with more than
1000 shoes have been recorded, including make, model, size,
manufacturer product code, degree of wear, and the presence of
either microcellular material or Schallamach patterns as detailed in
Tables 1-6. As necessary, each shoe was gently washed (using warm
water) to remove debris (i.e., this research does not account for the
possible presence of transient RACs, such as rocks, gum, etc.), When
dry, each outsole was scanned at 600PPI with an Epson Expression
11000XL Graphic Arts Scanner, Post-outsole scanning, Handiprint
exemplars were created [1] using a Zephyr™ brush (A-1-0200
Arrowhead Forensics, trimmed to a total length of approximately
1 inch), Lightning® Black Powder (1-4005 CSI Forensic Supply) and
Handiprint sheets with clear polyester covers (2-3150 CSI Forensic
Supply). To create each exemplar, the Handiprint sheet was prepared
by removing the clear polyester sheet and allowing the flexible
Handiprint material to rest (reform shape, adhesive side-up) while
lightly dusting the outsole with the powder and Zephyr® brush.

Table 1

Frequency of shoe type.
Type Number
Athletic 838
Dress shoe 88
Boot 56
Sandal 18
Total 1000

Table 2

Degree of wear. Shoes with light wear have
discernible texture. Shoes with moderate
wear may show some bald spots and lost
texture. Shoes with heavy wear have a near
complete loss of texture, many or large bald
spots, and possible holes or areas where the
outsole has worn away.

Wear Number
Light 281
Moderate 456
Heavy 263
Total 1000
Table 3
Presence of microcellular material on the
outsole.
Microcellular material Nurmber
Present 108
Absent 892
Total 1000

Table 4

Presence of Schallamach pattern on the

outsole.
Schallamach pattern Number
Present 743
Absent 257
Total 1000

Table 5

Frequency of manufacturer/brand.
Manufacturer/brand Number
Adidas 28
Asics 30
Brooks 10
Converse 30
Hoka 36
New balance 20
Nike 294
Puma 14
Reebok 160
Skechers 12
Under armour 60
Unknown 26

Other (fewer than 10 shoes) 280
Total 1000

Table 6

Frequency of men's and women's shoe sizes. Note: shoes of
unknown size account for the remaining 106 shoes (approximately
10%) of the database, Please note that size includes the full and half
size; for example, a size 6 includes size 6 and size 6.5.

Men's size Number Women's size Number
Size 5 2 Size 4 4
Size 6 4 Size 5 2
Size 7 28 Size 6 10
Size 8 54 Size 7 56
Size 9 148 Size 8 70
Size 10 200 Size 9 46
Size 11 162 Size 10 22
Size 12 62 Size 11 8
Size 13 14 Size 12 2
Total 674 Total 220

During powder application, the outsole was brushed in at least
three directions; North-South (toefheel), East-West (medial/
lateral) and diagonally to ensure full coverage. After dust
application, the shoe was tapped three-four times to dislodge
excess dust, before placing the outsole on top of the prepared
Handiprint sheet sitting on the laboratory benchtop. The
Handiprint + shoe combination was slowly pulled off of the
benchtop toward the analyst, while the researcher used his or
her hands to gently add pressure on the non-adhesive side of the
Handiprint (pressing the outsole against the tacky side of the
Handiprint to maximize tight contact). When the Handiprint + -
shoe was fully removed from the laboratory benchtop, the analyst
then used a paper towel or fingerprint roller to gently reapply
pressure between the Handiprint and outsole to again maximize
contact. When complete, the Handiprint was pulled from the
outsole and laid flat on the benchtop. The clear polyester cover was
then slowly re-applied from bottom to top in a type of rastering
process to minimize the introduction of air pockets between the
Handiprint and protective cover. After development, the Handi-
print was likewise scanned at 600PPL Both are illustrated in Fig. 1
for a size 9 men’s Converse Chuck Taylor® All Star™ with moderate
wear and Schallamach patterns.
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Fig. 1, Example of outsole (left) and Handiprint exemplar (right) scans.

In order to facilitate the automated downstream extraction of
RAC shape and position, the outsole and exemplar were
background subtracted and registered using identified control
points. This process required the analyst to identify eight common
geometric shapes that were patent on both the outsole and the
exemplar, The features selected for registration varied per shoe,
but needed to be distributed as evenly as possible around the
perimeter of the outsole (a minimum of two on the toe, two on the
heel, and the remaining four on the lateral and medial sides of the
shoe) and generally consisted of class characteristics with sharp
boundaries, such as corners in polygonal-geometric shapes (and
lettering in logos, if applicable).

To expedite this process, a simple graphical user interface was
constructed that opened two paired images. The first consisted of
the scanned version of the outsole, while the second displayed the
mirrored version of the Handiprint exemplar scan. With both
images in a common orientation, the analyst used the cross-hair of
the cursor on his or her mouse to designate mated-points between
the images (open windows). Using this process, any number of
mated points could have been selected, but as a compromise in
terms of efficiency and accuracy, eight total ground control points
were selected. Of the two possible images to use as a base, the
outsole was selected, which meant during transformation, the
Handiprint exemplar was translated, rotated, and scaled (as
necessary) to bring it into registration with the outsole, This
transformation was performed using a first order polynomial with
least-squares fitting (note that a first order polynomial was
selected over an affine transformation in order to handle slight
shearing in the toe and heel that is not uncommon when creating
Handiprint exemplars).

In addition to this co-registration, the background (non-tread
areas) of both the outsole and exemplar were removed. This was
accomplished in a rather rudimentary or primitive way, using the
aforementioned graphical user interface, wherein the analyst
simply traced the perimeter of the outsole using the cross-hair of
the cursor, thus automatically generating a binary image that
labeled every pixel as either belonging to the outsole or belonging
to the background. Once generated, this map was saved and
mathematically multiplied with other images downstream (e.g.,
the outsole and Handiprint exemplar) to effectively increase image
signal to noise ratios. As such, the background (or non-tread areas)
of both the outsole and exemplar were removed (Fig. 2) to ensure
the highest quality imagery moving forward (e.g., removal of
remnants of the analyst’s hands that may have been captured
during scanning when pressure was applied to the outsole to

Fig. 2. Registered and background subtracted outsole scan (left) and Handiprint
scan (right). The middle image is an overlay of the outsole and Handiprint
illustrating co-registration.

promote a nearly planar surface, andfor removal of extraneous
dust and fingerprints on Handiprint exemplars).

Finally, the outsole and exemplar were collectively translated
and rotated to ensure that both were centered within the image
frame (8961 x 8961 pixels) and oriented such that the long-axis of
the shoe (toe-to-heel) was North-South. This was most easily
accomplished using the binary image that was created in the
previous step, wherein each pixel was defined as either outsole or
background. From this image, the midpoint of the outsole was
mathematically computed (x,, ¥,), defined as the x-pixel halfway
between the maximum width of the shoe and the y-pixel halfway
between the maximum length of the shoe, Since the image frame
was 8961 x 8961 pixels, the image frame center was located at
pixel coordinate (4481, 4481), so the outsole and Handiprint
exemplar images were centered by translating the imagery such
that (X, ¥») was coincident with (4481, 4481).

To ensure that the shoe's long-axis was North-South, the binary
map defining outsole versus background was treated as a bivariate
normal distribution, amenable to eigen-decomposition. After
decomposition, the resulting eigen-vectors defined the major
and minor axes of the best-fit ellipse conforming to the (x, y)
coordinates of the pixels that defined the outsole. Ergo, the
deviation of the major axes from vertical defined the degree of
rotation necessary to ensure that the final imagery was oriented as
close to North-South as possible within the image frame.

Following registration and background subtraction, randomly
acquired characteristics present on both the outsole and exemplar
were marked. This process required the analyst to physically
examine each outsole with oblique illumination and 4X magnifi-
cation, Upon identifying a RAC that appeared on both the outsole
and the exemplar, the analyst blacked out the RAC pixels on the
Handiprint image using the pencil tool in Adobe® Photoshop™
Elements 10. This was completed by tracing the edge of the RAC
with the pencil tool (set at 2-pixels wide) and then filling in the
RAC (if necessary), with the paint bucket tool while viewing the
exemplar at a minimum magnification of 200X. When complete,
each feature was examined to ensure that every pixel included
within the traced perimeter of the RAC was fully labeled
(converted to black). For features found on the edge of the shoe,
a lug, or a tread element, the boundary of the RAC was interpolated
by hand if the distance for interpolation was short and relatively
linear (Fig. 3). In instances when the edge could not be dependably
interpolated (e.g., along an irregular segment, a curved surface, or
near a large void area), the RAC was traced, but not closed, in order
to avoid the introduction of interpolation variability (Fig. 4),

Aside: Thus far, a total of seven analysts have contributed to the
generation of this database. Each analyst has earned a minimum of a

Downloaded from ClinicalKey.com at Library Charles C Wise Jr August 11, 2016,
For personal use only. No other uses without permission. Copyright ©2016. Elsevier Inc. All rights reserved.



402 J.A. Speir et al./Forensic Science International 266 (2016) 399-411

Fig. 3. lllustration of RAC on edge of linear tread element, Note that the edge of the
RAC (terminating on the edge of a short and linear tread element), has been
interpolated and the entire RAC has been filled in, Vans™ sneaker, Skink Mid model,

men’'s size 9.5,

Fig. 4. lllustration of RAC on edge of curved tread element. Note that the edge of the
RAC (terminating on the edge of a curved tread element), has not been interpolated
nor filled in, Adidas™ sneaker, Pro Feather model, men's size 9.0.

Bachelor of Science in Forensic Science from a FEPAC accredited
university (two have a Master of Science in Forensic Science from a
FEPAC accredited university). All analysts have received 4-16 h of in-
house laboratory training by a certified IAl examiner, and 8-16 h of
training by a research assistant. However, none are certified examiners
and none have completed a full course of study in footwear analysis as
recommended by SWGTREAD [24]. The authors acknowledge this as a
shortcoming of the research, but without sequestering certified
examiners to perform this work (at the expense of casework), a
compromise in training was accepted, wherein the research analysts
received training devoted almost exclusively to the identification of
RAC and subclass characteristics.

When this registered and marked image was subtracted from
its registered (but unmarked) counterpart, the result was a RAC
map that highlighted the location and geometry associated with
each randomly acquired feature (Figs. 5 and 6). Using the standard
image processing technique of connected components, the
location of each RAC was sequentially characterized using three

parameters that were readily available based on x, y pixel
coordinates; the radius (r) or distance (in pixels) between the
shoe’s midpoint and the RAC's centroid (geometric average of the
RAC's x, y pixel coordinates), the angular (8) position (in degrees)
between the RAC's centroid and zero degrees (defined as a
horizontal line drawn directly East of the shoe’s midpoint), and the
normalized distance (rnorm) equal to r divided by the distance (in
pixels) between the shoe's midpoint and the perimeter of the shoe
at angular position & (obtained by casting out a vector from the
shoe's midpoint to the shoe's perimeter at angle 0).

Following localization, each feature was automatically num-
bered (via its connected component value) and extracted from the
total RAC map. The resulting subimages (Fig. 7) were then
evaluated to define RAC shape and geometry, based on a five-
dimensional RAC feature vector, before transformation into
individual RAC Fourier descriptors (FD).

2.1. RAC feature vector

Each randomly acquired characteristic was attributed to one of
four categories: lines/curves, circles, triangles, and irregular-
shaped features. To determine this categorization, five attributes
per RAC were required, including area, perimeter, linearity,
circularity, and triangularity. The first two descriptions (area and
perimeter) were readily available; area describes the total number
of pixels comprising the RAC and perimeter evaluates the distance
in pixels along a line/curve, or around a two-dimensional shape.

Fig. 6. Example of a selected portion of the Converse Chuck Taylor® All
Star™, Handiprint (top left), outsole (bottom left), marked Handiprint (top right),
RAC map (bottom right). Note that the outsole image shown in this figure has been
scanned on a flat bed scannmer, but that all RACs were detected using 4X
magnification and oblique illumination.
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I

Fig, 7, Subsection of RAC map and example of connected component subimages.
This particular RAC was numbered #101, located at a normalized radius of 0.55 and
an angle of 104°,

The linearity metric was also readily available and was obtained
by computing the ratio of the first and second eigenvalues (A and
X2) generated from eigen decomposition of the RAC coordinates
[25]. Using this approach, when A is much greater than A, the RAC
in question has a greater length than width and can be classified
into the linefcurve category.

The fourth measurement was a circularity metric, computed
according to Eq. (1) [26], where A is the area of the object, and P is
the length of its perimeter:

4TA
e="m. (1)
Rc = maximum of 1.0 for a perfect circle

The fifth and final metric was a triangularity value computed
using central moments (Eq. (2)) that are invariant to translation,
scale, and rotation.

Hpg = Z Z (x_xf}p(_yfyc)q (2)
L

As per Rosin [27], the variable I; in Eq. (3) equals 1108 for any
triangle that has been affine transformed into a perfect right-
angled triangle:

Iy = Hzn#ﬂi—ﬂ?1 (3)
Hop

As such, the triangularity measure can be normalized to vary
between 0.0 and 1.0 according to Eq. (4) [27]:

1
1081 if [£—
T— 108 )
1081, otherwise

2.2. Categorization parameters

The five-dimensional feature vector (Fig. 8) describing area,
perimeter, linearity, circularity, and triangularity served as a
primary descriptor and comparison parameter for each randomly
acquired characteristic. In addition, it was used to categorize the
randomly acquired characteristics into one of four groups; line/
curve, circle, triangle, or irregular.

Based on a survey of known geometric shapes, absolute
categorization rules were developed. More specifically (and for
this dataset), circles have a circularity measure greater than or
equal to 0.8, triangles have a circularity measure less than 0.8 and a
triangularity greater than or equal to 0.9, while lines/curves have a
linearity ratio greater than 5 and a triangularity measure less than
or equal to 0.3; any shape not satisfying one of the above rules
defaults into the irregular category (Fig. 9).

2.3. Shape descriptor

In addition to shape categorization, each RAC was treated as a
closed planar figure yielding a Fourier description [28-30]. This
description was generated by tracing the contour of the shape (x(t),
¥(t)) (where t=0, ..., N—1 with N=350 for this dataset) and
assuming a complex plane z(t) = x(t) + i y(t) (where i = v/—1). The
resulting one-dimensional complex sequence of numbers was then
mapped to the frequency domain via the discrete Fourier
transform [29] where R, and 8, are the magnitude and phase
of the mth coefficient, respectively [29]:

N-1
_ (—i2mmt/N) _ (im)

Z(m) = gz(t)e v =R e 5)

m=-Nj2,...,-1,0,1,...,N/2—1

As necessary, the coefficients can be normalized and forced to be
invariant to translation, scale, rotation, and contourfsequence start
point according to the following modifications [29]:

Z(0) = 0= translation invariance

R ; g
Rp = —Rﬂ = scale invariance

1
1+ 6 i ; 6
Om = m,?ﬁ% = rotation invariance (6)
G-1—b64 s
Om =0Om + m——= start point invariance

To illustrate, consider Figs. 10 and 11. Fig. 10 depicts a single RAC
(A), along with four synthetic modifications (B-E showing changes
in scale, rotation, and translation). The resulting normalized

|

[299, 63, 0.93, 0.72, 1.54] [395, 145, 0.04, 0.01, 77.99] [132, 54, 0.56, 0.95, 2.31] [917, 188, 0.33, 0.47, 6.97]

Circle Line/Curve

Triangle Irregular

Fig. 8. Four RAC images with their corresponding feature vectors (area, perimeter, circularity, triangularity, linearity).
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Circle

Line/Curve

Triangle

Irregular

Fig. 9. Examples of RACs classified as circles, lines/curves, triangles, and irregulars,

T
-~
i’

A -
D E

Fig. 10, (A) Original RAC, (B) rotated, (C) rotated, (D) rotated, translated, and scaled,
(E) scaled and translated.

Fourier descriptors are plotted in Fig. 11. The x- and y-axes are
arbitrary dimensions since the images have been normalized, but
note that all contours are normalized to the same configuration,
save a single 7 radian ambiguity [31]. Unless otherwise noted, all
subsequent uses of RAC Fourier descriptors make use of both
translation and start point invariance modifications.

3. Frequency and similarity assessment

At this point in data acquisition, each RAC has a geometric
description, location and well-defined origin (from a left or right
shoe with a known pattern, a known manufacturer (usually), a
known size, etc.) and can be assessed as such. However, for any
given shoe size (or pattern, or brand, etc.) the database itself is
limited in sample size. With this in mind, an interim solution (at
least until the database grows to such a size that sampling is
considered robust) is to transform the frequency information into a
normalized space that allows for numerical assessment regardless
of shoe size, shape, pattern, etc. Naturally, this simplification
bounds the utility of the frequency information, and the authors

urge the user to be cognizant of this moving forward, but the
transformation in no way invalidates provisional usefulness.

3.1. Outsole size and shape normalization

Normalization was achieved using a single idealized shoe
corresponding to a men’s size 10 Reebok®™ walking shoe with an
outsole surface area 0f21,235 mm?, Beginning from the top medial
portion of the shoe, the outsole was divided into 5 mm x 5 mm
cells through a rastering process, creating 990 total cells of which
860 were complete, and 130 were partial (or straddling the
perimeter/edge of the outsole as illustrated in Fig. 12), By mapping
between Cartesian and polar coordinates, each RAC could be
localized via @ and o Essentially, this meant that a RAC near the
edge of the medial part of the heel on a women's size 6.5 could have
the same 8 and rpon, as a RAC on the edge of the medial part of the
heel of a men's size 10.0, and therefore map to the same
5mm x 5 mm cell in the normalized outsole. (Note: we also have
the capacity to report frequency values as absolute, physical or non-
normalized values using @ and r. This would be equivalent to taking a
stack of Handiprints, centering all shoes in the middle of each sheet
with the toe-heel oriented North-South, and drilling down through all
sheets at a fixed location, regardless of shoe size, To further elaborate,
in the aforementioned example, the RAC on the medial heel portion of
the women's size 6.5 shoe would likely fall somewhere in the lower-
instep area of the men'’s size 10.0.)

3.2. Similarity assessment

The aforementioned normalization step yields RAC frequency
information and the potential for chance co-occurrence of RACs
within a 5mm x 5mm cell on an outsole (in other words, the
dataset can empirically estimate the random chance of discovering
two or more accidentals in the same position on shoes previously
known to be unrelated). This can be further divided by geometry in
terms of the chance co-occurrence of lines/curves, circles, triangles,
or irregular shaped RACs within a 5 mm x 5 mm cell. However,
chance co-occurrence in position and general category (line/curve,
circle, triangle, or irregular shape) does not mean coincidental
association in actual geometry since general categorization does
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Fig. 11. Plot of normalized Fourier shapes derived [rom the RACs shown in Fig. 10,

Fig. 12. lllustration of a single full and partial 5 mm % 5 mm cell on the normalized
outsole,

not sufficiently describe RAC complexity, In order to further assess
the similarity in shape for RACs that co-exist within a given cell by
chance, a numerical metric of similarity can be utilized to pre-rank
the data for the analyst, thereby efficiently limiting the number of
visual pair-wise comparisons required. To accomplish this, modi-
fied phase only correlation (MPOC) was employed. This metric
utilizes the Fourier transform Flg(x,y)] = G(u, v) of the RAC spatial
domain image g(x, y) giving the analyst access to frequency
information associated with the RAC's amplitude A(u, v) and phase
o(u,v) as illustrated in Eq. (7) where i = v/—1 [10].
Glu,v) = A(u, v)e 7@ (7)
With this in mind, the similarity (POCg,g,) between two RAC
images — g¢(x, y) and g(x, y) - can be determined (a value between
0.0 and 1.0) according to Eq. (8) [4,7.9] where F ! is the inverse

Fourier transform and G is the complex conjugate of G [10].

i G (U,V)G’(U,V) il ey
A e DL R ] — F1pilotuv)-8uv)
POC, =F | (WG, vy ~F !

(8)
As a “tuning” step, Eq. (8) can be modified by application of a
frequency filter that selectively limits frequencies used in the
computation such that Flg(x,y)-h(k,[)] = G(u,v). In this instance,
each image g(x, y) is modified by the windowing function shown in
Eq. (9) with o = 0.2 and where k = I = N which is the size of the RAC
spatial domain image in pixels (1600 x 1600):

h(k) = a—(1—a)cos [Z—Nk]

N )
k=0,1,...,N-1

4, Results
4.1. Database statistics

To date, more than 1000 shoes have been pre-processed. The
defining characteristics of the first 1000 (501 lefts and 499 rights)
are detailed in Tables 1-6. The majority of shoes in this collection
are athletic in nature (Table 1), due to generous corporate
donations and the availability of shoes for purchase from local
thrift stores. Table 2 reports the degree of wear of each shoe, which
is not quite balanced between light, moderate, and heavy. For this
study, shoes with “light wear” are those that exhibit discernible
texture throughout. Conversely, the label “moderate wear”
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describes shoes with a reasonable degree of wear, resulting in both
lost texture and possible bald spots. Finally, the term “heavy wear”
is reserved for shoes with a near complete loss of texture, many or
large bald spots, and possible holes or areas where the outsole has
completely worn through.

Table 3 shows that nearly 90% of the collection lacks
microcellular material in outsole composition. This is fortuitous
since the presence of microcellular material is likely to increase
intra- and inter-analyst variability in identifying randomly
acquired characteristics. Conversely, approximately three-quar-
ters of the database show Schallamach patterns (Table 4); this is
likewise fortuitous. Although current RAC data does not include
the quantification of these features, the discrimination potential of
Schallamach patterns can be explored in future studies.

Table 5 reports shoe frequency as a function of manufacturer
andfor brand. Results indicate that almost 30% of the shoes
processed thus far are from Nike® while another 28% are
comprised of a small number of shoes, but from numerous
manufacturers. Finally, Table 6 breaks down the database
according to size and intended market (men or women). The
results here are not random, but selective in the sense that our
group did not capture data for shoes with a physical outsole size
greater than the maximum length of a sheet of Handiprint
currently available for purchase (or approximately 13 inches in
total length).

The shoes in Table 1 generated a total of 57,426 RACs (average
of 57, minimum of 1, and maximum of 410). The majority (45%)
were categorized as lines/curves, with another 38% falling into the
irregular category. Circles filled a distant third group, comprising
only 11% of the database, with triangles completing the remaining
6% (Table 7).

The agreement between “automated” and “human" categori-
zation of RACs ranged between 95% and 68%, depending on the
complexity and imperfections of the shape under review. For
example, using a test set of 74 “stylized” shapes (manually created
in Image] [32] with an intended geometry), plus 110 randomly
selected RACs, the overall agreement or accuracy in categorization
was computed to be 95%, This was determined by taking the total
test set of 184 images and presenting them via a graphical user
interface to analysts seated at a computer, When presented with
each image, in a randomized order, the analyst was asked to
categorize the shape as either a circle, triangle, linefcurve or
irregular-shaped feature by clicking on a corresponding toggle
button. The same shape was automatically categorized using the
automated decision rules determined during our training phase,
and the results for three separate analysts (for a total of
552 human-perceptual estimates of shape categorization) were
combined into the confusion matrix shown in Table 8 with an
overall agreement of 95%.

Conversely, for a total of 800 randomly selected RACs (zero
stylized shapes), assessed by four analysts (200 each, with a total of
746 human-perceptual estimates of shape categorization of which

Table 7
Frequency of RACs by shape category.

Metric All RACs  Irregulars Circles Triangles Lines/curves

Total 57,426 22,075 6287 3242 25,822

Percentage 100% 38% 1% 6% 45%

Minimum number 0 0 0 0 0
in a cell

Maximum number 132 52 21 14 78
in a cell

Mean number in 58 22 6 3 26
a cell

Median number 61 23 6 3 27
ina cell

Table 8

Confusion matrix for automated categorization of 184 shapes (74 stylized and
110 real RACs) as assessed by three analysts for a total of 552 human-perceptual
assessments of shape. The column headers represent the algorithm report while the
rows designate human-perception. Total agreement equals 95%.

Circle Triangle Linefcurve Irregular
Circle 99 0 0 0
Triangle 0 90 2 4
Line/curve 0 0 214 8
Irregular 1 5 5 124

27 RACs happen to repeat during the randomized selection), the
equivalent confusion matrix (shown in Table 9) was found to have
an overall agreement of 68%. Despite the clear decrease in
agreement, the authors assert that this should not be defined as
an “error rate” since it is based on human-perception of shapes,
which cannot be expected to agree among or between individuals.
The problem is that there is no appropriate reference by which to
define “ground truth” as soon as shapes become complex and
imperfect, To illustrate this, consider Figs. 13 and 14 which show a
sampling of RAC images that lead to disagreement in the human-
perception versus automated algorithm study, contributing to the
results shown in Table 9. In both figures, the top row denotes the
automated categorization label, while the cell label indicates the
human analyst choice. Depending on the viewer and the image,
there are some instances where the human's reasoning seems
more “accurate,” and some instances where the algorithm’s choice
seems more “accurate.” Overall, the results suggest that it would
not be robust to keep a large number of RAC shape groupings, due
to both human-perceptual differences and RAC complexity/
imperfections. Given this observation, the authors suggest a
maximum of three groups that may be useful moving forward;
“irregular” for complex structures, “elongated” to describe lines
and curves, and a new grouping defined as “approximate isometry"
to include circular and triangular structures.

To assess inter- and intra-analyst variation in RAC marking, a
random set of 100 pairs of shoes (approximately 10% of the
database) were selected for periodic reassessment. On an
approximate bimonthly basis, each analyst selected the next
available shoe from the randomized list (which may or may not be
a shoe he or she has already marked), and repeated the marking
process on the post-registered and background subtracted image.
Subtraction of the newly marked RAC image from its registered and
unmarked mate created a secondary RAC map. Differences
between replicate maps then served as a basis for assessing inter-
and intra-analyst variation in marking.

Thus far, the quality assessment program has obtained
160 paired RAC maps, prepared by five analysts, over a 15-month
time period. The information contained in each of the 320 RAC
maps (two markings x 160 shoes) has been assessed in two ways.
First, the data has been converted into a one-dimensional (1D)
vector by rastering across image rows and down image columns,
collecting total RAC size per cell using a fixed bin width of
150 x 150 pixels (approximately 6 mm x 6 mm), The resulting 1D
feature vectors of RAC size (per cell) for paired RAC maps were then
evaluated to determine the average correlation coefficient of
similarity. Inter-analyst variation produced an average correlation
coefficient of 0.66 with a variance of 0.057, based on 137 paired
RAC maps. To date, the dataset has allowed for the computation of
intra-analyst correlation, but thus far, based on only 23 paired RAC
maps for two analysts in the research group; the combined average
correlation coefficient is 0.80 with a variance of 0.016. In addition
to the image-wide correlation scores, individual uncertainty of
measure for 0, r, and ryer, has been computed based on this same
dataset, Table 10 reports the mean, variance and range of
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Irregular

Triangle Irregular

Triangle Irregular

measurements associated with each value based on 160 shoes and
5477 duplicate marked randomly acquired characteristics (com-
bined inter- and intra-analyst markings). In addition, illustrations
of duplicate markings of known match RACs are shown in Fig. 15,
along with individual measurement differences. The results
indicate that angular differences are very small (less than a 1°)
and that radial distances differ by 0.16 + 1.9 mm. The interpretation
of each quality metric (correlation versus measurement uncertainty)
indicates that the greatest variation is within the RAC detection
process; however, when a RAC is detected, on average, it is
consistently marked in the same manner by all analysts in the
research group.

Table 11 details RAC frequency in each of the 990 bins on the
normalized shoe; approximately 2.4% of the cells are empty (or
void of RACs), and approximately 4.5% of the cells contain five or
fewer features, leading to at most a 1 in 11,485 random chance of
RAC co-occurrence in position (without regard for shape).
Moreover, the majority of bins (80%) contain between 26 and
100 RACs with a mean of approximately 58 features per cell
(Table 7). The results of the quality assurance program indicate
that in-house training ensures that analysts mark RACs in a highly
consistent manner, but that we have less control over the
standardization of day-to-day RAC detection (which is a function
of lighting, magnification, fluctuations in analyst attention, fatigue,
etc.). Given this, the next uncertainty estimate to be explored in a

Line/Curve Irregular

Irregular

Irreqgular

e

Triangle

Line/Curve

\n

Fig. 13. Illustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header).
To account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry
(a combination of circular and triangular structures).

Line/Curve

companion paper is actual frequency or count (e.g., the uncertainty
in the frequency of chance co-occurrence or 1:1000 + X).

In addition to the summary statistics provided in Tables 7 and
11, RAC frequency was also globally localized as a function of shoe
section as illustrated in Fig. 16. More specifically, the normalized
shoe was divided into eight sections, equally bisecting the shoe
into medial and lateral sections, as well as four quarters from heel
to toe. Tables 12-19 report the total number of acquired features
per section. Overall, there were more RACs within the toe (36,346
features) than the heel (21,080 features). In addition, the most
populated area was section 3, or the lower, lateral toe area of the
outsole, which contained approximately 18% of all RACs (Table 14)
and a mean RAC frequency of 69 per 5mm x5 mm cell
Conversely, the least populated area was section 6, or the medial
arch/upper heel region of the outsole, which matches intuition
since depending on shoe design, this region can have minimal
contact with the ground, and thus, a lower potential to acquire
features. Within this area, there was an average of only 34 features
per 5 mm x 5 mm cell, with a total of 3886 RACs (Table 17).

For this database, the greatest potential for randem chance co-
occurrence in RAC position and shape category was found to exist for
a single 5 mm x 5 mm bin located in section 2, approximately
70 mm from the heel of the normalized shoe, This particular area
on the outsole had a probability of co-occurrence that ranged from
1:756 to 1:9571 as illustrated in Table 20. Given this potential for
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Fig. 14. lllustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header). To
account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry (a

combination of circular and triangular structures).

co-occurrence, all RACs localized to this bin were pairwise
compared and ranked in terms of similarity using modified phase
only correlation (MPOC). For convenience, the two most similar
RACs were visually reproduced for the analyst in Fig. 17 (meaning

Table 9

Confusion matrix for automated categorization of 746 unique RACs and 27 repeated
RACs as assessed by four analysts for a total of 800 human-perceptual assessments
of shape, The column headers represent the algorithm report while the rows
designate human-perception, Total agreement equals 68%. Note that “rectangle”
was an early subdivision of the linejcurve category, that was later phased out (i.e.,
rectangles = line/curve),

Circle Triangle Rectangle Line/curve Irregular
Circle 46 10 0 0 19
Triangle 12 25 0 1 19
Rectangle 3 3 0 2 3
Line/curve 0 7 0 340 58
Irregular 9 80 0 29 134
Table 10

Variation in analyst duplicate marking of 5477 randomly acquired characteristics
across 160 shoes (320 RAC maps).

Metric 0 (degrees) r (pixels) r(mm) Tnorm
Mean 0.0922 4.27 0.167 0.00177
Variance 0.0178 91.7 3.61 0.0000121
Maximum 0.699 112 4,40 0.0300

all other pairwise comparisons had geometries less similar than
those shown). The visual representation provides the viewer with
the reported MPOC scores, the actual RAC images, as well as the
associated Fourier images. Although some level of visual similarity
can be discerned, the accidental features are distinguishable based
on size, shape and/or orientation. However, the fact that some level
of expressed similarity is apparent should not be ignored, and clearly
much more work is required to better understand the limit of
discrimination as a function of RAC size and complexity following
positional chance association.

Given that there are 990 cells on the normalized shoe, a total of
57,426 RACs, and a resulting 2,021,440 paired-similarity compar-
isons, the volume of information that can be gleaned from this
dataset is enormous and requires some type of user-friendly
interface. Toward this end, an interactive web-based heat map has
been created, of which a static-beta version is illustrated in Figs.
17 and 18 (see the following URL for the most up-to-date link
www.4n6chemometrics.com/database/). The goal is to report RAC
co-occurrence per cell, per shape category, as well as MPOC scores
and associated imagery (actual and normalized Fourier). This in
turn allows the analyst to visually and quantitatively evaluate the
spatial density of randomly acquired characteristics according to
location and shape in response to the National Academy of
Sciences' (NAS) 2009 request for relative frequency of features, as
well as SWGTREAD's request for research on “Random Placement
Shape and/or Placement of Randomly Acquired Characteristics” [22],
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(a) .

(C). .

Fig. 15. Duplicate markings of known match RACs with the following marking
variations: (a) Af=0.235, Ar=67.2 px/2.64 mm, Ar,em=0.0170; (b) AG=0567,
Ar=88.5px[3.49 mm, Aruem=0.0270; (c) Af=0551, Ar=112 px/4.40 mm,
Arporm = 0,0290,

Table 11
Frequency of RAC counts in 5 mm x 5 mm bins across a normalized shoe containing
990 total bins which are at least partially located on the outsole, In addition, the
potential for random duplication of RAC position, based on this database, is
provided.

Number of RACs (potential for co-occurrence) Frequency Percent of total
0(1:-) 24 2.4%
1(1:57,426) 4 0.4%
2-5(1:28,713-1:11,485) 18 1.8%
6-10 (1:9571-1:5742) 17 1.7%
11-25 (1:5220-1:2297) 91 9.2%
26-50 (1:2208-1:1148) 196 19.8%
51-75 (1:1126-1:765) 356 36.0%
76-100 (1:568-1:574) 242 24.4%
101-132 (1:568-1:382) 42 4.2%
Total 990 100%

Fig. 16. An illustration of the nermalized shoe outsole broken into eight sections,
The horizontal line equally bisects the shoe, while the vertical lines divide the shoe
into quarters.

and the “Mathematical Probabilities of Randomly Acquired Char-
acteristics” [23].

However, the authors acknowledge that the database must be
used with caution. The utility of the density information is its

Table 12
Frequency of RACs by shape category in section 1, as illustrated in Fig. 16,
Metric All RACs  Irregulars Circles Triangles Lines/curves
Total 7309 2837 755 428 3289
Minimum number 0 0 o 0 0
in a cell
Maximum number 116 51 19 14 64
in a cell
Mean number in 70 27 7 4 32
a cell
Median number 82 32 8 4 35
in a cell
Table 13

Frequency of RACs by shape category in section 2, as illustrated in Fig. 16.

Metric All RACs  Irregulars Circles Triangles Lines/curves

Total 8477 3228 849 495 3905

Minimum number 0 0 0 0 0
in a cell

Maximum number 113 49 21 10 68
in a cell

Mean number in 61 23 6 4 28
a cell

Median number 69 25 6 3 31
in a cell

Table 14

Frequency of RACs by shape category in section 3, as illustrated in Fig. 16,

Metric All RACs Irregulars Circles Triangles Lines/curves

Total 10377 4002 1170 568 4637

Minimum number 0 o 0 0 a
in a cell

Maximum number 124 46 19 14 72
in a cell

Mean number in 69 27 8 4 31
a cell

Median number 68 27 8 4 31
in a cell

Table 15

Frequency of RACs by shape category in section 4, as illustrated in Fig, 16,

Metric All RACs  Irregulars Circles Triangles Lines/curves

Total 10,183 3956 1121 574 4532

Minimum number 0 0 0 0 0
in a cell

Maximum number 113 48 17 12 64
in a cell

Mean number in 67 26 7 4 30
a cell

Median number 69 27 7 4 28
in a cell

Table 16

Frequency of RACs by shape category in section 5, as illustrated in Fig. 16.

Metric All RACs Irregulars Circles Triangles Lines/curves
Total 4935 1886 491 264 2294
Minimum number 0 0 0 ] 0

in a cell
Maximum number 132 52 18 8 76

in a cell
Mean number in 44 17 4 2 20

a cell
Median number 32 15 4 2 14

in a cell
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Table 17 Table 19
Frequency of RACs by shape category in section 6, as illustrated in Fig. 16. Frequency of RACs by shape category in section 8, as illustrated in Fig. 16.
Metric All RACs Irregulars Circles Triangles Lines/curves Metric All RACs TIrregulars Circles Triangles Lines/curves
Total 3886 1610 425 184 1667 Total 6845 2561 846 408 3030
Minimum number 0 0 0 0 0 Minimum number 1 0 4] 0 0
in a cell in a cell
Maximum number 99 32 17 6 48 Maximum number 87 36 21 11 49
ina cell in a cell
Mean number in 34 14 4 2 15 Mean number in 53 20 7 3 23
a cell a cell
Median number 33 14 3 1 12 Median number 55 21 6 3 24
in a cell in a cell
Table 18 Table 20

Frequency of RACs by shape category in section 7, as illustrated in Fig. 16,

Frequency of RACs and potential for co-occurrence as a function of position and

shape for bin located in section 2, approximately 70 mm from the heel of the shoe.

Metric All RACs Irregulars Circles Triangles Lines/curves = - 3
Description Any shape Irregular  Circle Triangle Linefcurve
Total 5414 1995 630 321 2468 -
Minhrihinhas 0 0 0 0 0 Total: in database 57,426 22,075 6287 3242 25,822
in a cell Total: in cell 132 39 11 6 76
Maximum number 131 44 17 1 78 Chance_ of finding  1:435 1:1472 1:5220 1:9571 1:756
inacell RAC in cell
Mean number in 59 22 7 4 27
a cell . i .
Median number 59 24 7 4 26 ability to shed light on the random and variable nature of RAC
in a cell frequency and possible co-occurrence. However, the heat map data
is not intended to be a quantitative collection of independent
wear-related events that can be multiplied to provide a cumulative
probability of occurrence for a constellation of RACs on a randomly
Image 1 Image 2 FD 1 FD 2
Normalized Shape Normaltzed Shape
) o
C' ! 1] 10}
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Fig. 17. Anillustration of the most similar RACs (i.e., highest MPOC score)in each shape category within the bin located in section 2, approximately 70 mm from the heel of the
shoe. The two RAC images are displayed in the first two columns. In addition, the Fourier descriptors (FD) for both images are included for easier visualization (last two
columns). Note that the most similar RACs are distinguishable based upon visual inspection and a correspondingly low MPOC score.
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Description Any Shape | Irregular | Circle | Triangle | Line/Curve
Total: In Detabase 57420 22,075 6,287 9,242 25,622
Total: In Cell 86 35 12 0 39
Chance of Finding RAC in Cell 1:667 11,640 | 1:4,785 1= 1:1,472

Low Density High Density

Fig. 18. Static illustration of web-based heat map for a normalized shoe, Numerical
values in the top row of the associated [requency table remain constant regardless
of the user's interaction with the heat map, displaying data associated with total
RAC count for the entire database (regardless of cell location). Conversely, the
middle and bottom rows automatically update to display RAC count and frequency
forindividual cells (5 mm x 5 mm)when queried by the user. In this static example,
the results are shown for a single cell outlined in black near the toe. Note that the
normalized shoe was a size 10 men's Reebok™ walking shoe with an area of
21,235 mm?, Follawing cell selection, the user is then able to navigate to a second
web-page that illustrates RAC similarity.

selected outsole, Moreover, density and categorization does little to
account for the clarity, quality, and complexity of a geometric
feature, which is as much (if not more important) to the forensic
footwear comparison than the simple assessment of presence or
absence. As such, the examiner's responsibilities cannot be deduced
to a simple table of frequencies, and a great deal more is required to
both interpret and understand how best to utilize the database this
project is generating. Despite this caveat, now that the data exists
and is accessible to the community, our new focus is how best to
present it to maximize value, along with estimates of uncertainty in
frequency, continued characterization of analyst-variability, and
quantitative metrics of shape similarity. To address these concerns,
additional data and research is sought. The ideal end goal is a detailed
analysis of co-occurrence in position and shape, fully accessible via
an online interface similar to that shown in Figs. 17 and 18, along
with recommendations regarding limits in discrimination as a
function of RAC size, area, geometry, and complexity.
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To:
Subject: Fwd: PCAST
Date: Friday, January 6, 2017 6:27:13 AM

Follow up email from Harold Ruslander,

---------- Forwarded message ----------

From: </ NG

Date: Thu, Dec 15, 2016 at 6:54 PM
Subject: PCAST

To: I

Dear Mr. Lander,

Thank you for your email. Your RFI does not specifically ask for "black box studies' as | read it, it asks
more generally for information related to the use of random accidental characteristics in the examination
of footwear evidence. Your published references include information that is related to the use of damage
and wear features to reduce the population of possible sources of an impression that are not mentioned
in the report. Perhaps, as my response suggested, more discussion with members of the practitioner
community in this area of expertise could provide some insight about the relevance of these studies to
your topic in question. There is at this time a black box study in progress at West Virginia University, it is
anticipated that those results will be published in the next year,

The majority of work in the forensic examination of footwear involves the association of
class/manufactured characteristics of footwear outsoles o impressions. The PCAST report does not
question this aspect of the analysis, and therefore does not question the vast majority of the work being
conducted. All features are evaluated in the same manner in the examination, it is their value that varies
and that is the subject of many of the papers that were provided to you. If it is the comparison process
you are guestioning, it is unclear why one isolated aspect of a process is being questioned. These, and
other questions may be resolved with some continued dialogue.

| believe a meeting with actual practitioners and you or your designee would be much more fruitful than
speaking with me. | am not a subject matter expert in that field but would be happy to suggest one or
more to you if you want.

| would also suggest that funding for face to face meetings between actual pracfitioners and those in your
group be requested so that these issues can be fully explored, perhaps you are able to arrange such
funding.

Harold Ruslander, President, The 1Al







