

# Pulp and Paper Residual Risk and Technology Rule

July 12, 2012



# **Key Issues from December proposal**

- Risks acceptable under section 112(f)
- Proposed Technology changes under 112(d)(6) very surprised
  - Increase condensate control efficiency from 92 to 94%
  - Increase pound per ton treatment requirement by 25%
    - would require additional collection of condensates
- Asked for comment on elimination of excess emission allowances
- Proposed to drop start-up, shutdown and malfunction provisions



# **AF&PA** actions since Proposal

- Filed extensive comments on February 27<sup>th</sup>
- Several meetings and calls with OAQPS staff
  - Cluster <u>very</u> complicated rule with interrelated parts and innovative alternatives carefully developed with stakeholders
  - Current EPA staff were not part of rulemaking 15+ years ago so education on history and rationale for provisions
  - Presented analysis and data including costs
- Filed supplemental comments on June 27 on venting allowances per AA McCarthy 2/22 comment extension



# Residual Risk – 112(f)

- Cluster MACT has resulted in reduced risks
- Support EPA's conclusion that risks acceptable
  - Industry worked with EPA for five years to improve data
  - Cancer, chronic and acute risks have Ample Margin of Safety
  - Eighty further refinements by mills further lower exposures
- Conclusion no cost effective emission reductions



# **Suggested Improvements – Don't Change Basic Requirements**

- No Control Efficiency Change
  - Systems that are "over-performing" are just meeting requirements given variability and need for compliance margin
  - No changes in controls, process or practices under 112(d)(6)
  - 92 to 94 percent is a major change stripper & WWTS upgrades
- No Need To Over-Collect Condensates
  - Very complicated Cluster compliance options Clean Condensate Alternative (CCA), strippers, & wastewater treatment systems
  - Mill by mill data shows no "over-collection" just continuous compliance with current standard
  - Cost half a billion (\$500 M) in capital to comply lose CCA



#### Cost to Treat to 94%: EPA – AF&PA Comparison

|                                | EPA Estimate | AF&PA Estimate |
|--------------------------------|--------------|----------------|
| Number of Facilities Affected  | 15           | 84             |
| Capital Cost (\$M)             | \$36         | \$223          |
| Annualized Capital Cost (\$M)  | \$4.1        | \$21           |
| Annual O&M Costs (\$M)         | \$0.15       | \$47           |
| Annualized Cost (\$M)          | \$4.25       | \$68           |
| Cost /Ton (Using 4092 tons/yr) | \$1,000      | \$16,700       |



#### **Venting Issues – Emission Allowances**

- Current 1%, 4%, and 10% are critical to safe operation of mills
   explosive gases, worker protection and equipment integrity
- Not malfunctions but part of normal process variability insurance and fire requirements; systems designed to vent
- NCASI survey of 81 mills shows wide variety of common events that are unavoidable
- At minimum, defer action in final RTR significant information to evaluate, not essential to (d)(6) or (f), huge costs, and cannot be eliminated
- Part of floor determination for best performers so no basis for change
- Emissions reflected in risk analysis so no health issues



# **NCASI** Venting Survey Results

- Intermittent venting occurs during normal operations as well as during startup and shutdown
  - Distinguished by threshold parameters or predetermined actions
- Momentary problems with transport system equipment as common as issues with process and control equipment
- Steam stripper downtimes are not zero control periods
  - Condensates routed to WWTS control continues
- Venting due to "fail-safe" systems, interlocks, and system permissives are integral to NCG system and either self correct or addressed through system isolation

## **Venting Elimination Impacts - \$750 M ++?**

| Cost Elements                                 | Number of Units Affected | Capital<br>Cost |
|-----------------------------------------------|--------------------------|-----------------|
| Route HVLC Systems to a Backup Control Device | 28                       | \$ 100 M        |
| Upgrade existing HVLC/LVHC Collection Systems | 73                       | \$ 150 M        |
| Replace existing HVLC/LVHC Collection Systems | 24                       | \$ 200 M        |
| Install Back-up Strippers                     | 44                       | \$ 300 M        |
| TOTAL (minimum)                               |                          | \$ 750 M        |



### Start-up, Shutdown, & Malfunction

- Emissions are different during startup & shutdown compared to normal operation
  - Nothing in EPA record to support equivalency
  - Legally do <u>not</u> have to change part of original Cluster, 2008 DC
     Court decision does not compel
- <u>IF</u> EPA drops S&S language (parenthetical saying S&S is in addition to venting allowances):
  - At least include within the venting allowance periods
- Malfunction affirmative defense
  - Change not required by RTR or court order; related to venting allowance issue
  - If malfunction is violation, then standards ≠ MACT floor
  - Affirmative defense criteria could exclude anticipated safety venting; unreasonable reporting depth and timing

